Cosmo ogy and Large Scale Structure

21 November 2024

<u>Today</u> More CMB Cosmic Dawn & Reionization

Homework 5 due next time

http://astroweb.case.edu/ssm/ASTR328/

Cosmological Parameters

The search for two parameters has become six, maybe seven

two parameters

- Hubble expansion rate
 - H_0
- Mass density
 - Ω_m

Or simply H_0, q_0 but in the absence of dark energy,

$$q_0 = \frac{1}{2}\Omega_m$$

six parameters

- Hubble expansion rate
 - H_0
- Power spectrum index and normalization
 - $n [P(k) \propto k^n]$
 - σ_8 (amplitude of mass fluctuations in 8 Mpc spheres)
- Mass-energy density
 - Normal matter (baryon) density Ω_{h}
 - Dark matter density Ω_{CDM}
 - Dark energy density (cosmological constant) Ω_{Λ}
 - Neutrino mass density Ω_{ν} (they're mass as well as energy)

CMB power spectrum

Detailed shape of the acoustic power spectrum depends sensitively on cosmic parameters.

Best-fit cosmology obtained from multi-parameter fit. Well constrained, but not unique - lots of parameter degeneracy.

Baseline model $\mathbf{2}$

$base_plikHM_TT_lowl_lowE$ 2.1

Parameter	Best fit	68% limits	Parameter	Best fit	68% limits	Parameter	Best fit	68% lim
$\Omega_{ m b}h^2$	0.022126	0.02212 ± 0.00022	$\sigma_8 \Omega_m^{0.25}$	0.6116	0.611 ± 0.012	H(0.15)	72.23	72.25 ± 0
$\Omega_{ m c}h^2$	0.12068	0.1206 ± 0.0021	$\sigma_{8}/h^{0.5}$	0.9938	0.993 ± 0.016	$D_{\rm M}(0.15)$	647.8	647.7 ± 7
$100 heta_{ m MC}$	1.040748	1.04077 ± 0.00047	$r_{\rm drag}h$	98.40	98.5 ± 1.6	H(0.38)	82.50	82.52 ± 0
au	0.0523	0.0522 ± 0.0080	$\langle d^2 \rangle^{1/2}$	2.4537	2.454 ± 0.038	$D_{\rm M}(0.38)$	1542.6	1542 ± 1
$\ln(10^{10}A_{\rm s})$	3.0413	3.040 ± 0.016	$z_{\rm re}$	7.54	7.50 ± 0.82	H(0.51)	89.310	89.32 ± 0
$n_{ m s}$	0.9635	0.9626 ± 0.0057	$10^9 A_s$	2.0933	2.092 ± 0.034	$D_{\rm M}(0.51)$	1996.8	1997 ± 1
$y_{ m cal}$	1.00046	1.0004 ± 0.0025	$10^9 A_{\rm s} e^{-2\tau}$	1.8853	1.884 ± 0.014	H(0.61)	94.998	95.01 ± 0
$A_{217}^{ m CIB}$	48.5	48 ± 7	D_{40}	1231.7	1234 ± 15	$D_{\rm M}(0.61)$	2322.3	2322 ± 2
$\xi^{ m tSZ imes CIB}$	0.32	_	D_{220}	5710.4	5713 ± 42	H(2.33)	236.75	236.7 ± 1
$A_{143}^{ m tSZ}$	7.03	5.1 ± 2.0	D ₈₁₀	2538.2	2536 ± 14	$D_{\rm M}(2.33)$	5777.8	5778 ± 1
A_{100}^{PS}	254.9	263 ± 28	D_{1420}	815.5	814.4 ± 5.1	$f\sigma_{8}(0.15)$	0.4642	$0.464 \pm 0.$
A^{PS}_{143}	49.8	49 ± 8	D ₂₀₀₀	229.94	229.5 ± 1.8	$\sigma_8(0.15)$	0.7500	$0.7492 \pm 0.$
$A^{\rm PS}_{143\times 217}$	47.3	44 ± 9	n _{s,0.002}	0.9635	0.9626 ± 0.0057	$f\sigma_{8}(0.38)$	0.4804	$0.4798 \pm 0.$
A_{217}^{PS}	119.9	115 ± 10	$Y_{\rm P}$	0.245295	$0.24529\substack{+0.00011\\-0.000088}$	$\sigma_8(0.38)$	0.6638	0.6631 ± 0.6631
A^{kSZ}	0.00	< 4.84	$Y_{\rm P}^{\rm BBN}$	0.246621	$0.24661\substack{+0.00011\\-0.000089}$	$f\sigma_{8}(0.51)$	0.4779	$0.4773 \pm 0.$
$A_{100}^{{ m dust}TT}$	8.86	8.9 ± 1.8	$10^5 \mathrm{D/H}$	2.6321	2.634 ± 0.042	$\sigma_8(0.51)$	0.6208	$0.6202 \pm 0.6202 \pm 0.0202 \pm 0$
$A_{143}^{{ m dust}TT}$	10.80	10.7 ± 1.8	Age/Gyr	13.8300	13.830 ± 0.037	$f\sigma_8(0.61)$	0.4722	$0.4716\pm0.$
$A_{143 imes 217}^{{ m dust}TT}$	19.43	18.3 ± 3.3	z_*	1090.292	1090.30 ± 0.41	$\sigma_8(0.61)$	0.5904	$0.5899 \pm 0.$
$A_{217}^{\mathrm{dust}TT}$	94.8	93.3 ± 7.4	r_*	144.442	144.46 ± 0.48	$f\sigma_8(2.33)$	0.29733	$0.2971 \pm 0.$
c_{100}	0.99965	0.99961 ± 0.00061	$100\theta_*$	1.040956	1.04097 ± 0.00046	$\sigma_{8}(2.33)$	0.30613	$0.3059 \pm 0.$
c_{217}	0.99825	0.99826 ± 0.00063	$D_{\rm M}(z_*)/{ m Gpc}$	13.8759	13.878 ± 0.044	f_{2000}^{143}	30.49	31.2 ± 3
H_0	66.86	66.88 ± 0.92	$z_{\rm drag}$	1059.437	1059.39 ± 0.46	$f_{2000}^{143\times 217}$	33.34	33.6 ± 2
Ω_{Λ}	0.6791	0.679 ± 0.013	$r_{\rm drag}$	147.182	147.21 ± 0.48	f_{2000}^{217}	107.77	108.2 ± 1
$\Omega_{\rm m}$	0.3209	0.321 ± 0.013	$k_{\rm D}$	0.14058	0.14054 ± 0.00052	$\chi^2_{\rm simall}$	395.88	397.0 ± 1
$\Omega_{\rm m}h^2$	0.14345	0.1434 ± 0.0020	$100\theta_{\rm D}$	0.161051	0.16107 ± 0.00027	$\chi^2_{\rm lowl}$	23.60	23.9 ± 1
$\Omega_{\rm m} h^3$	0.095909	0.09589 ± 0.00046	$z_{\rm eq}$	3412.7	3411 ± 48	$\chi^2_{\rm plik}$	758.7	771.4 ± 3
σ_8	0.8126	0.8118 ± 0.0089	keq	0.010416	0.01041 ± 0.00014	$\chi^2_{\rm prior}$	1.35	$7.3 \pm 3.$
S_8	0.8405	0.840 ± 0.024	$100\theta_{eq}$	0.8106	0.8109 ± 0.0089	$\chi^2_{\rm CMB}$	1178.2	1192.3 \pm
$\sigma_8\Omega_{\rm m}^{0.5}$	0.4604	0.460 ± 0.013	$100\theta_{\rm s,eq}$	0.44817	0.4483 ± 0.0046			

Best-fit $\chi^2_{\text{eff}} = 1179.58$; $\bar{\chi}^2_{\text{eff}} = 1199.58$; R - 1 = 0.00927

 χ^2_{eff} : CMB - simall_100x143_offlike5_EE_Aplanck_B: 395.88 commander_dx12_v3_2_29: 23.60 plik_rd12_HM_v22_TT: 758.75

https://wiki.cosmos.esa.int/planck-legacy-archive/images/b/be/Baseline_params_table_2018_68pc.pdf

its 0.787.9.5616).44 18).35201.3160.0120.0075.0095.0060.0082.00550.00720.0051.0025.00270.0.1.91.7..3 5.5.7 = 5.5

Hubble constant tension

covariance between parameters

$$\Omega_M h^3 = 0.0959$$

85

H₀ Expansion rate

Cosmology today: tension in H_0 ...and Ω_m

The CMB best fits have marched away from the original concordance region

McGaugh (2024) *Universe*, **10**, <u>48</u>

McGaugh (2024) *Universe*, **10**, <u>48</u>

LCDM did not correctly predicted the amplitude of the second peak, which was correctly predicted by the case of no CDM +

The amplitude of the second peak was the driver of the increase in the baryon density over the expectation of BBN

LCDM correctly predicted the location of the first peak, which is consistent with the expected flat geometry ($|\Omega_k| < 0.005$)

Multipole /

Does it *have* to be CDM?

3rd peak strong evidence for physics beyond baryonic drag.

This is usually interpreted to require the existence of nonbaryonic cold dark matter, which Planck requires at over 50 σ : $\Omega_{\rm CDM} h^2 = 0.1206 \pm 0.0021$

However, the interpretation remains ambiguous - could also be a modification of gravity (e.g., AeST gives an identical power spectrum.) (Skordis & Zlosnik 2021, PRL, 127, 161302)

"Cosmologists are often wrong, but never in doubt"

Cosmological parameters by decade

Quantity	"Standard CDM" SCDM 1988	"Concordance model" LCDM 1995	WMAP5 2008	Planck 2018	
Ω _m		0.35	0.258±0.027	0.315 ± 0.007	
ΩΛ	0	0.65	0.742	0.696 ± 0.009	
Ω _b h ²	0.0125 ±0.0025	0.015 0.009 - 0.020 "reasonable range"	0.02273 ±0.00062	0.0224 ±0.0001	
H _o	50	65	71.9±2.7	67.4 ± 0.5	
dark matter	CDM	CDM	CDM	CDM	

- Lev Landau

	<u>Time</u>	Event
	$t \sim 10^{-43} \text{ s}$	Planck scale (<i>speculative</i>)
	$t \sim 10^{-38} \text{ s}$	GUT scale (speculative)
	$t \sim 10^{-35} \mathrm{s}$	Inflation (speculative)
	$t \sim 10^{-12} \text{ s}$	Standard Model forces emerge
	$t \sim 10^{-8} { m s}$	WIMPs decouple (speculative)
c	$t \sim 10^{-5} { m s}$	quarks condense into baryons (baryog
sec	$t \sim 10^{-4} {\rm s}$	proton-antiproton annihilation ends
10sec	$t \sim 1 \text{ s}$	neutrinos decouple
	$t \sim 4 \text{ s}$	electron-positron annihilation ends
	$t \sim 10^2 { m s}$	Big Bang Nucleosynthesis
	$t \sim 10^5 \text{ yr}$	Matter-radiation equality
	$t \sim 4 \times 10^5 \text{ yr}$	Atoms form, CMB emerges
10 ^{-34sec}	$t \sim 5 \times 10^6 \text{ yr}$	Gas temperature decouples from rad
	$t \sim 10^7 \text{ yr}$	Dark Ages
	$t \sim 5 \times 10^8 \text{ yr}$	Cosmic dawn (first stars)
	$t \sim 10^9 \text{ yr}$	Galaxies form
10-43 sec	$t \sim 4 \times 10^9 \text{ yr}$	Peak star formation
10 ³² °K	$t \sim 9 \times 10^9 \text{ yr}$	Sun forms
	$t \sim 13 \times 10^9 \text{ yr}$	Life on earth
rmilab 1989		

Next frontier: 21 cm absorption at high redshift

time

redshift

Radio wavelength photons traveling to us from the epoch of recombination can be absorbed by neutral gas during the dark ages and at cosmic dawn

Three Temperatures:

 T_{γ} radiation temperature (the energy of the relic radiation field that is now the CMB) T_{kin} kinetic temperature (gas kinetic motion - what we normally think of as temperature)

 $T_{\rm S}$ spin temperature (21 cm line - statistical distribution of levels in atomic hydrogen)

Prediction for 21 cm absorption at high redshift

Spin temperature bracketed by the radiation temperature and the kinetic gas temperature:

$$T_S^{-1} = \frac{T_{\gamma}^{-1} + x_i T_{kin}^{-1}}{1 + x_i}$$

 $x_i \in \frac{X_i}{Cosmic dawn: Lyman \alpha photons}$ $T_0 = 20 \text{ mK}$ x_i couples the spin temperature to the kinetic gas temperature $\omega_b = \Omega_b h^2$ $f_b = \frac{\Omega_b}{\Omega_m}$ $\begin{pmatrix} T_{\gamma} \\ 1 - \frac{T_{\gamma}}{T_{S}} \end{pmatrix}$ absorption when $T_{S} < T_{\gamma}$ X_{HI} neutral hydrogen fraction

21 cm brightness temperature:

$$T_{21}(z) = T_0 \frac{\mathbf{x}_{\text{HI}}}{\mathbf{\mathfrak{h}}_z} \left[(1+z)f_b \left(\frac{\omega_b}{0.02}\right) \right]^1$$

$$\mathfrak{h}_{z} = \frac{H(z)}{\tilde{H}(z)} \qquad \qquad \begin{array}{c} H^{2} \\ H^{2} \\ \tilde{H}(z) \end{array}$$

Expansion history specifies path-length photons must traverse. This usual approximation $\tilde{H}(z)$ may not suffice.

 $I^{2}(z) = H_{0}^{2}[\Omega_{\Lambda} + \Omega_{m}(1+z)^{3} + \Omega_{r}(1+z)^{4} - \Omega_{k}(1+z)^{2}]$ $(z) = H_0 \Omega_m^{1/2} (1+z)^{3/2} \longrightarrow$ (This is an approximation)

Rep. Prog. Phys. 75 (2012) 086901

Copyright 2010 Nature Publishing Group.

J R Pritchard and A Loeb

Figure 1. The 21 cm cosmic hydrogen signal. (a) Time evolution of fluctuations in the 21 cm brightness from just before the first stars formed through to the end of the reionization epoch. This evolution is pieced together from redshift slices through a simulated cosmic volume [1]. Coloration indicates the strength of the 21 cm brightness as it evolves through two absorption phases (purple and blue), separated by a period (black) where the excitation temperature of the 21 cm hydrogen transition decouples from the temperature of the hydrogen gas, before it transitions to emission (red) and finally disappears (black) owing to the ionization of the hydrogen gas. (b) Expected evolution of the sky-averaged 21 cm brightness from the 'Dark Ages' at redshift 200 to the end of reionization, sometime before redshift 6 (solid curve indicates the signal; dashed curve indicates $T_b = 0$). The frequency structure within this redshift range is driven by several physical processes, including the formation of the first galaxies and the heating and ionization of the hydrogen gas. There is considerable uncertainty in the exact form of this signal, arising from the unknown properties of the first galaxies. Reproduced with permission from [2].