Cosmology and Large Scale Structure

5 November 2024 http://astroweb.case.edu/ssm/ASTR328/

Today Empirical Pillars of the Hot Big Bang

Nucleosynthesis (observations)

Homework 4 in one week

VOTE!

Helium is a poor baryometer because it varies little with the baryon density - we need a measurement accurate to the third place of decimals to constrain the baryon density.

Observationally, it is challenging to measure helium lines with great accuracy, and interpret their abundance as the percent level. It is also challenging to differentiate between primordial helium and stellar helium production

 $\lambda(\text{\AA})$

 $Y_p = 0.25 \pm 0.01$

with lots of debate over the 3rd place of decimals!

However, simply having a mass fraction of $1/4$ it is strong corroboration of BBN.

Helium

D/H in absorption along the line of sight to high redshift QSOs

FIG. 3. Spectrum of Q1937-1009; blueward of the characteristic Lyman- α emission line of the quasar is the "forest" of Lyman- α absorption due to the hundreds of intervening gas clouds. The lower panel shows a blowup of the region around the deuterium detection, a cloud at redshift $z = 3.572$, and the model fit.

Deuterium

Many discrete absorbers in the Lyman α forest, but no broad Gunn-Peterson trough from a neutral IGM

Deuterium is a good baryometer because D/H varies sensitively with the baryon density.

In addition, we also expect the gas observed in absorption at high redshift to be minimally affected by stellar nucleosynthesis subsequent to BBN.

Observationally, it is challenging to estimate the continuum level against which the absorption happens, and to compare a very weak deuterium line to a very strong hydrogen line.

Stellar spectra showing Lithium absorption

Lithium

Lithium is measured in old, metal poor stars for which there is hope that the surface abundance is little altered from the primordial abundance - the Spite plateau.

column density (atoms/cm2)

Lithium

BBN gets the abundances of deuterium, helium, and lithium right if the mass density is about 4% of the critical density.

There is some tension in that lithium prefers a somewhat lower baryon density, but the basic picture is sound.

Lithium is a challenging as a baryometer because the variation of Li/H with the baryon density is double-valued thanks to the

 1.0_F

deuterium

Lithium

BBN gets the abundances of deuterium, helium, and lithium right if the mass density is about 4% of the critical density.

BBN is one of the most robust aspects of the hot big bang, as each isotope provides independent corroboration.

$$
\omega_b = \Omega_b h^2 = 0.022
$$

$$
\omega_b = \Omega_b h^2 = 0.017
$$

from deuterium

 $\omega_b = \Omega_b h^2 = 0.019$ from deuterium prior to CMB constraints

from lithium

$$
h = \frac{H_0}{100}
$$
 so $\omega_b = 0.02$ and $H_0 = 70$
means $\Omega_b = 0.04$

Consequently, the baryon density is well-known, but far short of the critical density.

BBN already old news in 1991

PRIMORDIAL NUCLEOSYNTHESIS REDUX

TERRY P. WALKER,^{1,2} GARY STEIGMAN,^{2,3} DAVID N. SCHRAMM,⁴ KEITH A. OLIVE,⁵ AND HO-SHIK KANG² Received 1990 December 17; accepted 1991 January 17

ABSTRACT

The latest nuclear reaction cross sections (including the most recent determinations of the neutron lifetime) are used to recalculate the abundances of deuterium, ³He, ⁴He, and ⁷Li within the framework of primordial nucleosynthesis in the standard (homogeneous and isotropic) hot, big bang model. The observational data leading to estimates of (or bounds to) the primordial abundances of the light elements is reviewed with an emphasis on ⁷Li and ⁴He. A comparison between theory and observation reveals the consistency of the predictions of the standard model and leads to bounds to the nucleon-to-photon ratio, $2.8 \le \eta_{10} \le 4.0$ ($\eta_{10} \equiv$ $10^{10}n_B/n_y$), which constrains the baryon density parameter, $\Omega_B h_{50}^2 = 0.05 \pm 0.01$ (the Hubble parameter is $H_0 = 50h_{50}$ km s⁻¹ Mpc⁻¹). These bounds imply that the bulk of the baryons in the universe are dark if $\Omega_{\text{TOT}} = 1$ and would require that the universe be dominated by nonbaryonic matter. An upper bound to the primordial mass fraction of ⁴He, $Y_p \le 0.240$, constrains the number of light (equivalent) neutrinos to $N_p \le 3.3$, in excellent agreement with the LEP and SLC collider results. Alternatively, for $N_s = 3$, we bound the predicted primordial abundance of 4 He: 0.236 $\le Y_p \le 0.243$ (for $882 \le \tau_n \le 896$ s).

Subject headings: abundances — early universe — elementary particles — nucleosynthesis

No. 1, 1991

PRIMORDIAL NUCLEOSYNTHESIS REDUX

FIG. 12.—Predicted abundances (by number) of D, $D + {}^{3}He$, and ⁷Li, and the ⁴He mass fraction as a function of η for $N_v = 3$ and $\tau_v = 889$ s for 0.1 \leq $\eta_{10} \leq 100$. The vertical band delimits the range of *n* consistent with the observations

Since $N_r \geq 3$ (assuming $m_{rr} \leq a$ few MeV; the inequality is because BBN is sensitive to particles which could be undetected at SLC and LEP) and $\tau_n \geq 882$, we see from equation (4) that

$$
Y_n \ge 0.227 + 0.010 \ln \eta_{10} \tag{30}
$$

so that, for $Y_p \le 0.240$, we find $\eta_{10} \le 4$. If, however, we choose for the observational upper bound to the primordial helium abundance $Y_n \le 0.245$ (0.235), this bound on the nucleon

delimits the range of η consistent with the observations.

where T is in kelvins. Comparing the baryon mass density

Walker et al. (1991)

 H_0 100

 H_0

$$
\Omega_b h_{50}^2 = 0.05 \pm 0.01 \qquad h_{50} =
$$

so

$\omega_b = 0.0125 \pm 0.0025$

was canonical for many years. Now

50

 $h =$

$$
\omega_b = 0.0224 \pm 0.0001
$$
 (Planck 2018)

take error bars with a grain of salt!

CMB

CMB

Planck best fit

 $\Omega_b h^2 = 0.0224 \pm 0.0001$

There has been more growth in the baryon density than anticipated by the uncertainties, but the basic picture is sound.

 $\Omega_b h^2 = 0.02230 \pm 0.00023$

Where are the baryons now? Mostly in the intergalactic medium (IGM) (Shull et al. 2012)

Ly $a = Lyman$ alpha forest (IGM) WHIM = Warm-Hot Intergalactic Medium ICM = Intra Cluster Medium (hot gas in clusters) CGM = CircumGalactic Medium (gas in galaxy halos) stars = stars in galaxies

 $\Omega_b h^2 = 0.019 \pm 0.001$ $\Omega_b h^2 = 0.0125 \pm 0.0025$

Stars only about 7% of the baryons expected from BBN - for a long time there seemed to be a missing baryon problem. Perhaps there still is, but chiefly it appeared that way because most normal matter has not condensed into stars.

There is more gravitating mass than Big Bang Nucleosynthesis allows in normal matter. Need **non-baryonic** dark matter.

But estimates of Ω*m* **run higher: there's more mass than meets the eye**