sme Age indicuters

- GCs fang Ms etw (note ilt bownays)
- Whe Iwarf Lisinasity function
- Radiacture decay Thorium
- Isotopic ratios in interstellar graris

A main saquase shac geth to burk abrex 12^{20}
of tes initel maxs in cence H boxas,
Durkeng this time it her a apporevoret
canst main serverta. Hencexl. lowitio of
the main sequence turn of friat
gives the agy (to folt ar 4)

$$
\begin{aligned}
& E+m c^{2} \\
& \text { b. } \mathrm{b}=\mathrm{d} \\
& t=\frac{E}{L}=\frac{0.1(0007) m c^{2}}{L}
\end{aligned}
$$

Tho wothed depends nuthe tistore sule, becter $L x t^{2}$

$$
\text { G blage Uwinorge har begher hor } L \text { be comeng }
$$

Age limits -
unverse mut be it least as did as its contents!
AGE PROBLEM: Mewl $t_{\mathrm{y}} \leq \mathrm{H}_{0}^{-1} \quad \quad \mathrm{H}_{0}=100 \rightarrow t_{\mathrm{t}}^{-1}=10 \mathrm{app}$
Globular clusters
$\left.C_{h a b o y e r e d 1998: ~}^{\langle t}\right\rangle_{\sigma c}=11.5 \pm 1.3$ Gur
Chabayer sol $1992: \quad t_{\mathrm{FC}}=17 \pm 2 \mathrm{Gyr}$
corona wisdom for a log g time
$(\sin \alpha$ early $70:): t_{b c}=15-166_{y}+126$ ard
very hard to imagine

$$
M_{V}^{T 0}=217 \log t_{G c}+0.3[E / H]+1.41 \quad t_{G c} \text { in } G_{y}
$$

Ci typically very de $1 \rightarrow$ metal poor $-\left[F_{0} / H\right] \approx-1,5$
this is all distance dependent:

$$
\begin{aligned}
& \quad t_{0} \notin \frac{M_{0}}{L} \quad \text { Bot } L=\frac{4 \pi r^{2} f}{\xi} \\
& -V^{10}-V^{0 / 18}=\Delta V=2.70 \log t_{t}+0.13\left[F_{f} / H\right]+0.59 \\
& \text { - } \quad \text { (1-v) not distance or every] [E/u)dpendeat } \\
& \text { y hart he ap ti ghat in model }
\end{aligned}
$$

Radioactive chronouster
r-process: veng have elemete ayptriag)
in $S N$ with veng high nextron fluxfe \rightarrow ereote elmante fo "fim muslari "valley f stlllta" long hiel istape persist.

Thorinm decays with half lif that $=14.05 \mathrm{Gyn}$ uhid is on folleig the $t=\frac{14 \mathrm{mt}}{\mathrm{hz}}=20.27 \mathrm{ogy}$ measure Th/En in solure sytton with all how age (4.55 gyr)
\rightarrow gives "initial" Th/an rito (0,046)
can the Themen in very dl star to settes age
upends an universality of initial Th/e retio which depende on ruclosignthesis site (tyef I, II, min ?) BUT r-procees absondmace natiss remarbally similer

$$
\begin{align*}
& N_{\text {Th }}(t)=N_{T_{\text {Ih }}\left(t_{0}\right)} e^{-t / \tau_{\text {Th }}} \\
& \text { Ofservel. in CS22892-052: Th/Eu }=0.219 \\
& \text { for staw system } N\left(t_{0}\right) \\
& t=15.2 \pm 3.7 \mathrm{~Gy} \tag{4}
\end{align*}
$$

Chemical Evolution
assuning Tharvisa is produce at a cousturt rate per unit gas mase, ro

$$
\begin{aligned}
& \dot{N}_{n}=r_{h}-\frac{N_{n}}{\tau_{n}} \\
& N_{T k}(t)=r_{m} T_{m}\left[1-e^{-t_{1} / \tau_{n}}\right]
\end{aligned}
$$

tane crovecte the inctinl star value for the buill upllacuy of Thowi aver thes in the gelactic dish

$$
\left.N\left(\frac{\pi}{\varepsilon_{k}}\right)=\left(\frac{t_{d}-t_{\theta}}{\tau_{m_{n}}}\right)\left(\frac{e^{t_{0}-t_{k}}}{1-e^{-\frac{t_{n}-t_{0}}{\tau_{n}}}}\right) N N_{0}^{\sigma^{2}}\right)
$$

$$
\begin{aligned}
& t_{\theta}=\text { age of difin } \\
& t_{\theta}=\text { solungge }
\end{aligned}
$$

Answer dependo on detail of star formotion hitary, but geverially tendo to incriave urfered age.

Whise Duarf lumimosion function
gives age of yalactic disk in solar neighbrhoor: $\approx 10 G_{y n}$
 computation of WD LF complex.
depando an couperition clo He

* atrua phara
 to affett omsoner strangh (hamen).

Other complicutions
If compasition includea some hearise demury thea will settle granscatody providiy am addition hat smuce.

Also have to worry about optical trimespoct thayd wo atmaplues. If furx nlittiltion corb stars malas them Hear (as mo brow douerf) thar this prantes a wrintele whot could ald atgo

Aye estimate from $O_{x y g e n}$ is topes $i \sim$ stardust
Oxygen made - moderate mans stars and dredged up from cove during red giant phase. Isotopic ration $\left(0^{18} / 0^{17} / 0^{16}\right)$ depend on mass and metatlicity of producing star.
Grains form such stats are fond in grants. on hyperbolic obits - Heady entered to solar sass origin... Effecturg identical grain fond in inclusions in primitive meteorite, fie they wame mompor at at the thine footer stan formation
yields best estimate of age for the galaxy

$$
t_{6}=14.4 \pm 1.3 \mathrm{G}_{y r}
$$

lots of pieces - all mast antrinate, prole size io th

$$
\text { log, } t_{z} \text { - sens hard to de, hat nether hate appeaser }
$$

to hare bibb pp pot).

$$
\begin{aligned}
& A G E=t+t_{\text {mix }}+t_{*}+t_{z} \\
& 4.6 \mathrm{~Gy} \\
& f(M, Z) \\
& \text { typically } 4-5 \text { Gur. } \\
& \text { Some caves } 26 \text { Got } \\
& \sim 10^{8}
\end{aligned}
$$

