Cosmology

and Large Scale Structure

Today
Expansion dynamics
Time and Distance

Expansion dynamics

The Acceleration equation with the cosmological constant:

$$
H=\frac{\dot{a}}{a}
$$

$$
\underline{\ddot{a}}=-\frac{4 \pi G}{}(\rho+3 P)+\frac{1}{\Lambda} \Lambda \quad a=(1+z)^{-1}
$$

The Pressure P is zero when matter dominates.
It is simply related to the energy density when radiation dominates.
You can see why the cosmological constant leads to acceleration!

$$
\ddot{a} \sim \Lambda
$$

$\frac{d}{d t}(\dot{a})^{2}=2 \dot{a} \ddot{a} \quad$ can be used to obtain the first order Friedmann equation

Expansion dynamics

Friedmann equation

$$
H=\frac{\dot{a}}{a}
$$

$$
H^{2}=H^{2}\left(\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}\right)
$$

$$
a=(1+z)^{-1}
$$

Looks trivial, but H and Ω evolve. So really

$$
\left(\frac{H}{H_{0}}\right)^{2}=\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}
$$

In general, must solve numerically. But often we can ignore irrelevant terms -

So often only two terms matter. In the early universe, only one, as the mass-energy dominates.
Zero in a flat universe
cosmological constant

Expansion dynamics

Friedmann equation

$$
H^{2}=H^{2}\left(\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}\right)
$$

$$
H=\frac{\dot{a}}{a}
$$

$$
a=(1+z)^{-1}
$$

It is useful to consider the limit for domination by each case (matter, radiation, curvature, cosmological constant)

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

Simplifies to

$$
\left(\frac{H}{H_{0}}\right)^{2}=\Omega_{m_{0}}(1+z)^{3}+\Omega_{k_{0}}(1+z)^{2}
$$

for a universe without a cosmological constant in the matter dominated era $\left(\Omega_{m}>\Omega_{r}\right)$.

Or just $\quad\left(\frac{H}{H_{0}}\right)^{2}=\Omega_{m_{0}}(1+z)^{3} \quad$ at early times when $\Omega_{m} \rightarrow 1$.

Expansion dynamics

Friedmann equation

$$
H=\frac{\dot{a}}{a}
$$

$$
H^{2}=H^{2}\left(\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}\right)
$$

$$
a=(1+z)^{-1}
$$

has some interesting limiting behaviors

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

Simplifies to

$$
\left(\frac{H}{H_{0}}\right)^{2}=\Omega_{r_{0}}(1+z)^{4} \quad \text { for the early, radiation dominated universe when } \Omega_{r} \gg \Omega_{m} \text {. }
$$

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

Friedmann equation

$$
H^{2}(z)=H_{0}^{2}\left[\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}\right]
$$

$$
H=\frac{\dot{a}}{a}
$$

$$
a=(1+z)^{-1}
$$

It is convenient to define the Expansion term

$$
E^{2}(z)=\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}
$$

or equivalently

$$
E^{2}(a)=\Omega_{m_{0}} a^{-3}+\Omega_{r_{0}} a^{-4}+\Omega_{k_{0}} a^{-2}+\Omega_{\Lambda_{0}}
$$

So that or equivalently

$$
\frac{\dot{a}}{a}=H_{0} E(a)
$$

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

Friedmann equation

$$
H=\frac{\dot{a}}{a}
$$

$$
\frac{\dot{a}}{a}=H_{0} E(a)
$$

$$
a=(1+z)^{-1}
$$

If we don't know the full details of $E(a)$, we can make a Taylor expansion

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

$$
a(t) \approx 1+H_{0}\left(t-t_{0}\right)-\frac{1}{2} q_{0} H_{0}^{2}\left(t-t_{0}\right)^{2}+\ldots
$$

where we see the deceleration parameter as the next term after the Hubble constant

$$
q=-\frac{a \ddot{a}}{\dot{a}^{2}}=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}
$$

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

If we don't know the full details of $E(a)$, we can make a Taylor expansion

$$
H=\frac{\dot{a}}{a}
$$

$$
a(t) \approx 1+H_{0}\left(t-t_{0}\right)-\frac{1}{2} q_{0} H_{0}^{2}\left(t-t_{0}\right)^{2}+\ldots
$$

$$
a=(1+z)^{-1}
$$

can define higher order terms that are increasingly difficult to measure

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

deceleration parameter $\quad q=-\frac{a \ddot{a}}{\dot{a}^{2}}=-\frac{1}{H^{2}} \frac{\ddot{a}}{a}$
The deceleration parameter is defined with the negative sign so it would be a positive number in a decelerating universe because we really expected that would be the case.
jerk

$$
\begin{aligned}
& j=\frac{a^{2} \dddot{a}}{\dot{a}^{3}}=\frac{1}{H^{3}} \frac{\dddot{a}}{a} \\
& s=\frac{a^{3} \dddot{a}}{\dot{a}^{4}}=\frac{1}{H^{4}} \frac{\dddot{a}}{a}
\end{aligned}
$$

snap
crackle, pop...

FIG. 3. "Standard" Friedmann models. The family of scale factors $R(\tau)$ for the "standard models" $(\Lambda=0)$. The free parameter, shown on the curves, is Ω_{0}. As shown by the τ intercepts, all models have ages $\leq 1\left(\leq H_{0}^{-1} \mathrm{yr}\right)$.
H_{0} is the slope
q_{o} is the next derivative the change in the slope

Have to see far away before you can start to perceive q_{o}, hence the desire for bright standard candles like supernovae.

Hubble Diagram

Expansion history

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

There is an analytic solution for matter domination - can parameterize the expansion as a cycloid

$$
H=\frac{\dot{a}}{a}
$$

$$
a=\frac{\Omega_{m}}{2\left(1-\Omega_{m}\right)}(\cosh \eta-1)
$$

$$
H_{0} t=\frac{\Omega_{m}}{2\left(1-\Omega_{m}\right)^{3 / 2}}(\sinh \eta-\eta)
$$

where $\boldsymbol{\eta}$ is the development parameter - related to the conformal time
The current value of the development parameter is

$$
\cosh \eta_{0}=\frac{2}{\Omega_{m_{0}}}-1
$$

This is of no use now because of Lambda, BUT it does become useful for the growth of structure in the early universe, when every protogalaxy can be considered its own little island universe with $\Omega_{m} \gtrsim 1$

Robertson-Walker metric

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[d r^{2}+S_{k}^{2}(r) d \Omega^{2}\right]
$$

for photons, $d s=0$ so this becomes

$$
c d t=a(t) d r
$$

Once we know (or assume) what kind of universe we live in, we specify the expansion history $a(t)$.
we know the expansion factor from the redshift

$$
\frac{a\left(t_{0}\right)}{a\left(t_{e}\right)}=1+z
$$

Once we know (or assume) what kind of universe we live in,

$$
\text { we specify the expansion history } a(t) \text {. }
$$

we know the expansion factor from the redshift $\quad \frac{a\left(t_{0}\right)}{a\left(t_{e}\right)}=1+z$
a photon propagating through the expanding universe traverses a distance element

$$
d l=c d t=a(t) d r
$$

The comoving separation between two points is fixed, so

$$
r=\int_{0}^{r} d r=c \int_{t_{e}}^{t_{0}} \frac{d t}{a(t)}
$$

Relates observed redshift to the time of photon emission (40o Myr ago in the example at right).

comoving coordinates constant

Once we know (or assume) what kind of universe we live in, we specify the expansion history $a(t)$.
we know the expansion factor from the redshift
a photon propagating through the expanding universe traverses a distance element

$$
d l=c d t=a(t) d r
$$

The comoving separation between two points is fixed, so

$$
r=c \int_{t_{1}}^{t_{2}} \frac{d t}{a(t)}=c \int_{t_{2}}^{t_{3}} \frac{d t}{a(t)}
$$

$$
\frac{a\left(t_{2}\right)}{a\left(t_{1}\right)}=1+z_{1 \rightarrow 2} \quad \frac{a\left(t_{3}\right)}{a\left(t_{2}\right)}=1+z_{2 \rightarrow 3}
$$

relates the redshift to the expansion factor

In terms of redshift,

$$
D_{p}\left(z_{e}\right)=\frac{c}{H_{0}} \int_{0}^{z_{e}} \frac{d z}{E(z)}
$$

For zero cosmological constant, there is an exact solution known as Mattig's equation:

$$
D_{p}(z)=\frac{2 c}{H_{0}} \frac{\left[z \Omega_{m}+\left(\Omega_{m}-2\right)\left(\sqrt{1+z \Omega_{m}}-1\right]\right)}{\Omega_{m}^{2}(1+z)}
$$

In general, there is no analytic solution, but can approximate with the Taylor expansion:

$$
D_{p}(z)=\frac{c}{H_{0}}\left[z-\frac{1}{2}\left(1+q_{0}\right) z^{2}\right]
$$

Where the leading term is Hubble's Law

$$
D_{p}(z)=\frac{c z}{H_{0}}
$$

For time rather than distance

Friedmann equation

$$
\frac{\dot{a}}{a}=H_{0} E(a)
$$

$\left(t_{0}-t_{e}\right)$ is the Lookback time - the time since the photon was emitted.

$$
4-1
$$

$$
H_{0} \int_{t_{e}}^{t_{o}} d t=\int_{a_{e}}^{1} \frac{d a}{a E(a)}=\int_{0}^{z_{e}} \frac{d z}{(1+z) E(z)}
$$

$$
H_{0}\left(t_{0}-t_{e}\right)=\int_{0}^{z_{e}} \frac{d z}{(1+z) E(z)}
$$

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

$$
\begin{gathered}
H=\frac{\dot{a}}{a} \\
a=(1+z)^{-1}
\end{gathered}
$$

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

The age of the universe is obtained by setting

$$
t_{e}=0 ; z \rightarrow \infty
$$

$$
H_{0} t_{0}=\int_{0}^{\infty} \frac{d z}{(1+z) E(z)}
$$

$$
\Omega_{m}+\Omega_{r}+\Omega_{k}+\Omega_{\Lambda}=1
$$

$$
H=\frac{\dot{a}}{a}
$$

$$
a=(1+z)^{-1}
$$

$$
E(z)=\sqrt{\Omega_{m_{0}}(1+z)^{3}+\Omega_{r_{0}}(1+z)^{4}+\Omega_{k_{0}}(1+z)^{2}+\Omega_{\Lambda_{0}}}
$$

which can be approximated by

$$
t_{0} \approx\left(\frac{2}{3 H_{0}}\right)\left(0.7 \Omega_{m_{0}}+0.3-0.3 \Omega_{\Lambda_{0}}\right)^{-0.3}
$$

There is no deep theory in this last formula.
It is just a fitting formula that approximates the answer to a few \%.

Similarly, the redshift-age of a matter dominated universe can be approximated as

$$
\frac{1}{t(z)} \approx H(z)\left[1+\frac{1}{2} \Omega_{m}^{0.6}(z)\right]
$$

