## Cosmology <br> and Large Scale Structure



Today
Observational Tests

Number Counts
e.g., Galaxy N(m), N(z)

Galaxy selection
Homework 2 due

## Observational Tests

## Five Classic Tests

- Luminosity-redshift relation
- Angular size-redshift relation
- Number-redshift relation
- Number-magnitude relation
- Tolman test

Standard Candle

Standard Rod

Source counts with redshift

Source counts with magnitude
Surface brightness not distance independent in Robertson-Walker geometry
"Galaxies are the building blocks of the universe"

- Jim Peebles


## - Number-redshift and Number-magnitude relations

Since the volume depends on curvature, source counts $\mathrm{N}(\mathrm{m})$ provide a test

For sources of luminosities $L$ and constant comoving number density $\Phi(L)$,
homogeneity, no evolution
Number-redshift:

$$
N(<z)=\frac{4 \pi}{3 H_{0}^{2}} z^{3} \int_{0}^{\infty} \Phi(L)\left[1+\frac{3}{2} z\left(1+q_{0}\right)\right] d L
$$

Number-magnitude:

$$
N(<f)=\frac{4 \pi}{3}(4 \pi f)^{-3 / 2} \int_{0}^{\infty} \Phi(L)\left[1-3 H_{0}\left(\frac{L}{4 \pi f}\right)^{1 / 2}\right] L^{3 / 2} d L
$$

Historically, radio source counts in the 1960 played an important role in excluding the Steady State cosmology.

Number-magnitude:

A "no evolution" model extrapolates the locally measured Schechter function to high redshift.
 an extra high redshift galaxy population (dE) with constant star formation rate (SFR) at $z>1$ and rapidly fading at $z<1$ is invoked."

Only test that does not explicitly require redshift information.
Basically integrate over all the relevant distributions.



For sources of type $T$ and magnitude $m$.

We can only get at the volume element if we understand the other terms and their redshift evolution.

## Galaxy Morphology

## NGC 3379

NGC 628


## Schechter function

$$
\Phi(L)=\Phi^{*}\left(\frac{L}{L^{*}}\right)^{-\alpha} e^{-L / L^{*}}
$$

L* Characteristic luminosity
$\Phi^{*} \quad$ Characteristic number density
$\alpha \quad$ Faint end slope

| Population | $\log \left(M^{*} h_{07} / M_{0}\right)$ | a | $\begin{aligned} & \phi^{*} / 10-3 \\ & \left(\operatorname{dex}-1 \text { Mpc-3 } h_{0,73}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Early Type | $10.74 \pm 0.026$ | $0.525 \pm 0.029$ | $\begin{aligned} & 3.67 \\ & +0.20 \end{aligned}$ |
| Late Type | $10.70 \pm 0.049$ | $1.39 \pm 0.021$ | $\begin{aligned} & 0.855 \\ & +0.10 \end{aligned}$ |



## Selection Effects



Elliptical galaxies typically fit with de Vaucouleurs profiles. Spiral galaxies typically fit with exponential profiles.

Schombert (2007) arXiv:astro-ph/0703646


Fit ellipses, derive surface brightness profile:


Disk galaxies (Spirals+Irrs)

HSB

LSB

High Surface Brightness Galaxy


Azimuthally averaged light distribution approximately exponential for spiral disks.

Low Surface Brightness Galaxy

## Disk galaxies (Spirals+Irrs)



Galaxies exist all over the size-surface brightness plane up to maximums in luminosity $L^{*}$ and surface brightness $\Sigma_{\dagger}$

No minimums known - lower boundaries set by selection effects.

Note that galaxies of a given luminosity exist over a wide range of size and surface brightness. Galaxies are not a single parameter sequence in mass.

## Selection effects in galaxy surveys -

the number of galaxies in the Sloan survey as a function of mass

Faint and low surface brightness galaxies are hard to see. Only detected over a small volume.

Bright galaxies are easy to see.
Are detected over a large volume.
This is highly unrepresentative.


## The intrinsic

 numbers of galaxies increase with decreasing mass after volume correction.Most mass is in the most massive galaxies.

Luminosity density
$j=\int_{0}^{\infty} L \Phi(L) d L=\Phi^{*} L^{*} \Gamma(2-\alpha)$
Incomplete $\Gamma$ function of order unity for $\alpha<1.5$; diverges for $\alpha=2$.

$$
j \approx \Phi^{*} L^{*}
$$



In general, one would like to know the bivariate distribution of size and surface brightness.

This is the 2D projection of a 3D plot with number density illustrated by the shading.

The luminosity function is an integral over the bivariate distribution: $L \propto \Sigma_{e} R_{e}^{2}$.

Can employ more parameters to more fully describe galaxies. E.g., this plot is restricted to morphological types Sb - Sdm .


Bivariate space density distribution of $\mathrm{Sb}-\mathrm{Sdm}$ galaxies as a function of effective surface brightness and effective radius from de Jong \& Lacey (2000, ApJ, 545, 781). The line indicates the 20 Mpc sample selection limit for face-on exponential disks. To the left of the line we are limited by small number statistics and local density fluctuations.

## Source Counts: The Effect of Evolution

$\boldsymbol{\operatorname { l o g }} N$ (per unit area and unit flux or mag)

$\boldsymbol{\operatorname { l o g }} \boldsymbol{f} \quad$ or $\quad$ magnitude $\boldsymbol{\xi}$

## (at a fixed cosmology!)

Evolution

No evolution
Luminosity evolution moves fainter sources(more distant and more numerous) to brighter fluxes, thus producing excess counts, since generally galaxies were brighter in the past

Density evolution means that there was some galaxy merging, so there were more fainter pieces in the past, thus also producing excess counts at the faint end

In order to distinguish between the two evolution mechanisms, redshifts are necessary

## What We Need

- Stellar theory predicts the evolution or (stellar tracks) or stars of a given mass. There is some variation among different theoretical models
- Observations give us libraries of stellar spectra as a function of age, mass, metallicity, etc.
- We need the initial mass function (IMF) of stars
- All of these are uncertain at very low metallicities and high stellar masses
- We have to assume some star formation rate (SFR) as a function of time. Popular choices include a sharp burst, a constant SFR, or an exponentially declining one:

$$
\frac{\partial M}{\partial t} \propto \exp \left(-\frac{t}{\tau}\right)
$$

## Galaxy Evolution

SSP: evolution of simple stellar population in which all stars are born at the same time.


Stellar Evolution


## Stellar

 Spectra





Complex Stellar Population


