COSMO OGY and Large Scale Structure

22 September 2022

Number Counts e.g., Galaxy N(m), N(z) Galaxy selection

Homework 2 due

http://astroweb.case.edu/ssm/ASTR328/

Observational Tests Five Classic Tests

• Luminosity-redshift relation $D_L - z$ • Angular size-redshift relation $D_A - z$ • Number-redshift relationN(z)• Number-magnitude relationN(m)• Tolman test $\Sigma(z)$

"Galaxies are the building blocks of the universe" - Jim Peebles

It is easier for a camel to go through the eye of a needle than to understand cosmology without understanding galaxies - Matthew 19:23

- Z Standard Candle

Standard Rod

Source counts with redshift

Source counts with magnitude

Surface brightness not distance independent in Robertson-Walker geometry

• Number-redshift and Number-magnitude relations

Since the volume depends on curvature, source counts N(m) provide a test

For sources of luminosities *L* and constant comoving number density $\Phi(L)$,

homogeneity, no evolution

Number-redshift:

Number-magnitude:

$$N(< f) = \frac{4\pi}{3} (4\pi f)^{-3/2} \int_0^\infty \Phi(L) \left[1 - 3H_0 \left(\frac{L}{4\pi f} \right)^{1/2} \right] L^{3/2} dL$$

Historically, radio source counts in the 1960s played an important role in excluding the Steady State cosmology.

$$\Phi(L)\left[1+\frac{3}{2}z(1+q_0)\right]dL$$

Number-magnitude:

A "no evolution" model extrapolates the locally measured Schechter function to high redshift. Number-magnitude:

Only test that does not explicitly require redshift information. Basically integrate over all the relevant distributions.

$$A(m,T) = A_0 \int_0^z D(z,T)$$

Density distribution (e.g., non-uniform large scale structure)

$$N(m,T) = \int_{T} \int_{0}^{m} A(m,T)$$

We can only get at the volume element if we understand the other terms and their redshift evolution.

Metcalfe et al. (1996)

For sources of type *T* and magnitude *m*.

Ellipticals 3D ellipsoids pressure supported, dynamically hot: V/σ small

Galaxy Morphology

Late Types (Spirals & Irregulars)

Spirals 2D disks rotationally supported, dynamically cold: V/ σ large

Schechter function

$$\Phi(L) = \Phi^* \left(\frac{L}{L^*}\right)^{-\alpha} e^{-L/L^*}$$

 L^* Characteristic luminosity

- Φ^* Characteristic number density
- α Faint end slope

Population	log(<i>M</i> * <i>h</i> ₀. ₇ 2/M₀)	a	ф*/10– з (dex–1 Мрс–з <i>h</i> _{0.7} 3)
Early Type	10.74 ± 0.026	0.525 ± 0.029	3.67
			+0.20
Late Type	10.70 ± 0.049	1.39 ± 0.021	0.855
			+0.10

Galaxy mass function from the GAMA survey

Moffett et al. 2016, MNRAS, 457, 1308

Selection Effects

Disk galaxies (Spirals+Irrs)

HSB

LSB

High Surface Brightness Galaxy

$$\Sigma(R) = \Sigma_{o} e^{-R/R_{d}}$$

Azimuthally averaged light distribution approximately exponential for spiral disks.

Low Surface Brightness Galaxy

Disk galaxies (Spirals+Irrs)

Galaxies exist all over the size-surface brightness plane up to maximums in luminosity L^* and surface brightness Σ_{\pm}

No minimums known - lower boundaries set by selection effects.

Note that galaxies of a given luminosity exist over a wide range of size and surface brightness. Galaxies are **not** a single parameter sequence in mass.

McGaugh (1999) IAU 171: ASP 170, 19 (arXiv:astro-ph/9810363)

Selection effects in galaxy surveys the number of galaxies in the Sloan survey as a function of mass

Bright galaxies are easy to see.

The intrinsic *numbers* of galaxies increase with decreasing mass after volume correction.

Most *mass* is in the most massive galaxies.

Luminosity density

$$j = \int_0^\infty L \Phi(L) dL = \Phi^* L^* \Gamma(2 - \alpha)$$

Incomplete Γ function of order unity for α < 1.5; diverges for α = 2.

 $j \approx \Phi^* L^*$

Galaxy mass function from the GAMA survey

Moffett et al. 2016, MNRAS, 457, 1308

In general, one would like to know the bivariate distribution of size and surface brightness.

This is the 2D projection of a 3D plot with number density illustrated by the shading.

The luminosity function is an integral over the bivariate distribution: $L \propto \Sigma_e R_e^2$.

Can employ more parameters to more fully describe galaxies. E.g., this plot is restricted to morphological types Sb - Sdm.

Bivariate space density distribution of Sb-Sdm galaxies as a function of effective surface brightness and effective radius from de Jong & Lacey (2000, ApJ, 545, 781). The line indicates the 20 Mpc sample selection limit for face-on exponential disks. To the left of the line we are limited by small number statistics and local density fluctuations.

Source Counts: The Effect of Evolution

• log f

or

(at a fixed cosmology!)

Evolution

No evolution

Luminosity evolution

moves fainter sources(more distant and more numerous) to brighter fluxes, thus producing excess counts, since generally galaxies were brighter in the past

Density evolution means that there was some galaxy merging, so there were more fainter pieces in the past, thus also producing excess counts at the faint end

> In order to distinguish between the two evolution mechanisms, redshifts are necessary

Djorgovski (2017)

- a given mass. There is some variation among different theoretical models
- age, mass, metallicity, etc.
- We need the *initial mass function (IMF)* of stars
- masses
- an exponentially declining one:

What We Need

• Stellar theory predicts the evolution or (*stellar tracks*) or stars of

• Observations give us *libraries of stellar spectra* as a function of

• All of these are uncertain at very low metallicities and high stellar

• We have to assume some *star formation rate* (SFR) as a function of time. Popular choices include a sharp burst, a constant SFR, or

$$\frac{\partial M}{\partial t} \propto \exp\left(-\frac{t}{\tau}\right)$$

Djorgovski (2017)

Galaxy Evolution

SSP: evolution of simple stellar population in which all stars are born at the same time.

