## Cosmology <br> and Large Scale Structure



Today
Observational Tests
Galaxy evolution
k-corrections

## What We Need

- Stellar theory predicts the evolution or (stellar tracks) or stars of a given mass. There is some variation among different theoretical models
- Observations give us libraries of stellar spectra as a function of age, mass, metallicity, etc.
- We need the initial mass function (IMF) of stars
- All of these are uncertain at very low metallicities and high stellar masses
- We have to assume some star formation rate (SFR) as a function of time. Popular choices include a sharp burst, a constant SFR, or an exponentially declining one:

$$
\frac{\partial M}{\partial t} \propto \exp \left(-\frac{t}{\tau}\right)
$$

## Galaxy Evolution

SSP: evolution of simple stellar population in which all stars are born at the same time.


Stellar Evolution


## Stellar

 Spectra





Complex Stellar Population


Early Types (Ellipticals)

## Star formation rate

Sandage (1986)


## Galaxy Evolution

Early Type Galaxies (aka ETGs: Elliptical galaxies) generally formed most their stars early, in the first few billion years or so.

Late Types (aka LTGs: Spirals \& Irregular galaxies) have a more continuous star formation history, and continue to form stars today.


Fig. 10. Same as Fig. 9 with later Hubble types shown in the lower panel. The integral under the Sm curve is shaded for illustration. The curves are only schematic showing the trends that have been established by Gallagher et al. (1984)

## Galaxy Evolution

Common model star formation history

Exponential:

$$
\mathrm{SFR}=\dot{M}_{*}=\Psi(t, T) \propto e^{-t / \tau}
$$

with different e-folding timescales characteristic of different morphological types $T$.

ETGs typically have small $\tau \approx 1$ Gyr; LTGs typically have longer timescales, sometimes of order a Hubble time. Individual galaxies vary substantially.


## Galaxy Evolution

Star formation and Stellar mass - the "star forming main sequence"


## Galaxy Evolution

ETGs typically have small $\tau \approx 1$ Gyr; LTGs typically have longer timescales, often roughly constant but usually with substantial short-term variations.


$$
b=\frac{\dot{M}_{*}}{\int_{0}^{t} \dot{M}_{*} d t}=\frac{\dot{M}_{*}}{\left\langle\dot{M}_{*}\right\rangle} \approx \frac{\mathrm{SFR}}{M_{*} / t}
$$

$$
f_{*}=\frac{M_{*}}{M_{*}+M_{g}}
$$

## Galaxy Evolution

## Gas mass and Stellar mass



## Galaxy Evolution

## Integrated stellar mass and star formation rate

$$
\rho_{*}=\int_{0}^{t} \psi d t^{\prime}
$$



The mass density in stars is small: about $7 \%$ of the BBN baryon density

$$
\begin{aligned}
& \Omega_{*_{0}} \approx 0.0035 \\
& \Omega_{*_{0}}=\Upsilon_{*}\left[\Phi_{0}^{*} L_{0}^{*} \Gamma(\alpha)\right] / \rho_{c}
\end{aligned}
$$

Stellar mass-to-light ratio
Schechter function at $z=0$ critical density


The cosmic star formation rate peaked early, around $z \approx 2$ (about 10 Gyr ago).

The star formation rate at high redshift is highly uncertain due to extinction corrections.



Figure 3. A comparison of how the observed GSMF evolves as a function of redshift in our three, degree-scale, survey fields. In this plot the number density uncertainties are simply the Poissonian counting errors. The availability of three, non-contiguous, degree-scale survey fields allows an empirical measurement of the level of cosmic variance in the high-mass end of the GSMF (see text for discussion).

Note that the shape of the luminosity function evolves; the knee only appears around $z \sim 2$



To measure the luminosity function, we have to estimate the volume surveyed, which means assuming a cosmology to compute $d_{L}$ and $V(z)$.

The luminosity function evolves; galaxies are fainter and the knee disappears at high redshift

Cosmic background radiation: photon energy at all wavelengths over the whole sky


Dust emission is mostly reprocessed starlight: the radiation field warms the interstellar dust, which reradiates in the IR

IG. 3 Dots represent the $U^{\prime}-B^{\prime}: B^{\prime}-l^{\prime}$ colours of galaxies with $B^{\prime}<27.5 \mathrm{mag}$ in the Hubble Deep Field. Primed letters for magnitudes indicate that here we are using the natural HST magnitude system, with the zero point set at an AOV star. The arrows represent detection upper limits, mainly galaxies which are undetected in $U^{\prime}$. The $U^{\prime}-B^{\prime}$ colours move sharply redwards at $B^{\prime}-l^{\prime} \approx 0.8$ due to the Lyman- $\alpha$ forest/Lyman break passing through the $U^{\prime}$ band. The predicted tracks are the $q_{0}=0.05$ evolutionary models for each morphological type as detailed in Fig. 1 legend, modulated in the case of $\mathrm{Sbc} / \mathrm{Scd} / \mathrm{Sdm}$ types by our assumed internal dust absorption of $A_{u}^{\prime}=0.45 \mathrm{mag}, A_{B}^{\prime}=0.3 \mathrm{mag}, A_{1}^{\prime}=0.11 \mathrm{mag}$ and in the case of all galaxies by the Lyman- $\alpha$ forest absorption. The models used in the $q_{0}=0.5$ case (not shown) show a very similar behaviour, even for the rapidly fading dE type. The $z=1$ and $z=2$ labelled positions on the tracks indicate The $z=1$ and $z=2$ labelled positions on the tracks indicate
the colours of model E/SO and Sdm galaxies at these the colours of model E/SO and Sdm galaxies at these
redshifts. The remaining symbols show the colours of 45 redshifts. The remaining symbols show the colours of 45
brighter galaxies with Keck spectroscopic redshifts, and these agree well with the predicted colours for these galaxies. It can also be seen that $U^{\prime}-B^{\prime}<0$ is predicted to correspond to galaxies with $z<2$, and $U^{\prime}-B^{\prime}>0$ to galaxies with $z>2$.

Color-color plot with redshifted galaxy tracks


## K-corrections

A correction to the magnitude of an object to account for the redshifting of its spectrum $f(\lambda)$ through filter $S_{i}(\lambda)$

filter transmission window
distance modulus becomes

$$
m_{i}-M_{i}=5 \log \left(\frac{D_{L}}{\mathrm{Mpc}}\right)+25+A_{i}^{A_{i}}+K_{i}
$$

K-corrections


## K-corrections

Cosmic expansion causes the source spectrum to shift and stretch.


Any given filter provides a fixed window on the moving target of a redshifted spectrum. We observe a bluer part of the spectrum than that which was emitted in the rest frame of the filter.

## K-corrections



## SDSS filters at $\mathrm{z}=\mathbf{0}$

## SDSS filters at $\mathrm{z}=0.1$

## Blanton et al. (2002)

Fig. 2.- Demonstration of the differences between the unshifted SDSS filter system ( $0.0 \mathrm{u}, 0.0 \mathrm{~g}, 0.0 \mathrm{r}, 0.0 \mathrm{i}, 0.0 \mathrm{z}$ ) in the top panel and the SDSS filter system shifted by $0.1(0.1 \mathrm{u}, 0.1 \mathrm{~g}, 0.1 \mathrm{r}, 0.1 \mathrm{i}, 0.1 \mathrm{z})$ in the bottom panel Shown for comparison is a 4 Gyr-old instantaneous burst population from an update of the Bruzual A. \& Charlot (1993) stellar population synthesis models. The K -corrections between the magnitudes of a galaxy in the unshifted SDSS system observed at redshift $\mathrm{z}=0.1$ and the magnitudes of that galaxy in the 0.1 -shifted SDSS system observed at redshift z = 0 are independent of the galaxy's spectral energy distribution (and for AB magnitudes are equal to $-2.5 \log 10(1+0.1)$ for all bands; Blanton et al. 2002a). This independence on spectral type makes the 0 . 1 -shifted system a more appropriate system in which to express SDSS results, for which the median redshift is near redshift $\mathrm{z}=0.1$.

## K-corrections

Lots and lots of filters minimizes the assumptions in $f(\lambda, T)$




Johnson filters UBVRI



HST/ACS and WFC3 filter set


## Galaxy Evolution

Characteristic magnitude $\mathbf{m}^{*}$ of protocluster galaxies as a function of redshift (Franck 2017, Ph.D.)


Galaxies are brighter and clustered sooner than predicted by LCDM simulations.

Since the volume depends on curvature, source counts provide a test

For sources of luminosities $L$ and constant comoving number density $\Phi(L)$,

Number-redshift:

$$
N(<z)=\frac{4 \pi}{3 H_{0}^{2}} z^{3} \int_{0}^{\infty} \Phi(L)\left[1+\frac{3}{2} z\left(1+q_{0}\right)\right] d L
$$

Number-magnitude:

$$
N(<f)=\frac{4 \pi}{3}(4 \pi f)^{-3 / 2} \int_{0}^{\infty} \Phi(L)\left[1-3 H_{0}\left(\frac{L}{4 \pi f}\right)^{1 / 2}\right] L^{3 / 2} d L
$$



FIG. 2 The galaxy number-redshift distribution, $n(z)$, for $22.5 \mathrm{mag}<$ $B<24$ mag implied by new redshift data acquired on the Keck Telescope (refs. 6, 7). The observed $n(z)$ is clearly more extended than the nonevolving models with either $q_{0}=0.05$ or $q_{0}=0.5$. The extended redshift distribution is well fitted by our evolutionary models whose parameters are described in Fig. 1 legend.

## Large Scale Structure is apparent

 in the non-smoothness of $\mathrm{N}(\mathrm{z})$.Galaxies evolve!
Certainly in luminosity, probably also in number.

So a single Schechter fcn doesn't suffice.
All of these terms matter.
 large scale structure)

$$
\mathrm{n}(\mathrm{~L}) \leftrightarrow \Phi(\mathrm{M})
$$

ССРС-z28-002


Large Scale Structure is apparent in the non-smoothness of $\mathrm{N}(\mathrm{z})$.

Galaxies evolve!
Certainly in luminosity, probably also in number.

So a single Schechter fcn doesn't suffice.
All of these terms matter.
$A(m, T)=A_{0} \int_{0}^{z} D(z, T) \Phi(M, T) d V\left(z, q_{0}\right)$
large scale structure $\quad n(L) \leftrightarrow \Phi(M)$

Unexpected structure in $\mathrm{N}(\mathrm{z})$ persists to high redshift: the density distribution $\mathrm{D}(\mathrm{z}, \mathrm{T})$ is non-uniform (red lines indicate one of many candidate proto-galaxy clusters (named).

