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6 Large–scale structure

6.1 Introduction

The global properties of the universe – geometry, chemistry and early density fluctuations – are well
described by GR, BBN and CMB respectively. The present day universe displays great complexity
in terms of large–scale structure and varying galaxy properties (to name just two). Additional
techniques are required to extend the standard cosmological model to describe these phenomena
and to form a continuous link between the properties of the early universe and the universe we
observe today. The goal is to achieve this with the simplest range of physical assumptions.

Observational measures of large–scale structure were first discussed via the galaxy number magni-
tude, N(m), distribution. The adherence of observations to the relation predicted for a uniformly
populated, flat spacetime provided the first evidence that galaxies form a standard universal compo-
nent. Early, impressive work on measuring the large scale structure of the universe was performed
by Shapley and Ames (1932 – 1,200 galaxies), Hubble (1934 – 44,000 galaxies) and Shane and
Wirtanen (1954 – 1,000,000 galaxies) – mapping the distribution of galaxies – and by Abell (1958
– 2700 clusters) – mapping the distribution of rich galaxy clusters.

However, it was only during the 1980s that photographic galaxy surveys were combined with spec-
troscopic studies to create large galaxy redshift surveys from which quasi three dimensional maps
of the universe could be created. The pioneer in this field was the CfA Redshift Survey (containing
some 3000 galaxy redshifts out to a redshift z = 0.04). Already the void and filament pattern
observed in this survey placed strong constraints upon HDM models – as discussed in the previous
lecture, HDM could not explain the fine structures being observed. The current state–of–the–art
is the SDSS which will accumulate 1,000,000 galaxy redshifts out to redshifts z < 0.3 and obtain
photometry for up to 108 galaxies. These observational resources provide the raw material for
quantitative models of large scale structure.

One concept that should be emphasized is the isotropy of large–scale structure. Viewed within a
narrow angle the universe shows marked density variations as a function of line–of–sight. However,
when one considers wider regions of the universe, e.g. corresponding to the Hubble volume, one
patch of the universe looks very much like another when subject to a wide range of statistical
measures. It is this observations prompts the statement that the universe is isotropic (and therefore
homogeneous) on large scales.

The aim of this lecture is to describe the theoretical steps that provide the link between the current
cosmological model (GR, BBN, CMB) and observed structure in the present day universe, and the
observational tools employed to quantify our description of this structure.
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6.2 The growth of density fluctuations in an expanding universe

In a matter dominated universe We have so far considered the expansion dynamics to be governed
by the average mass density, i.e. ρ̄(t) ∝ a(t)−3. We now consider the dynamics of a small1, spherical
region of the universe of local mass density

ρ(t) = ρ̄(t)[1 + δ(t)], (1)

with δ(t)� 1. The dimensionless density perturbation δ can be positive or negative and represents
either a slightly over or underdense region of the universe. Consider the equation of motion of the
radius of the spherical region, i.e.

R̈ = − GM

R(t)2
= − G

R(t)2

(
4π

3
ρ(t)R(t)3

)
= −4π

3
Gρ̄(t)R(t)[1 + δ(t)]. (2)

or
R̈

R
= −4π

3
Gρ̄(t)[1 + δ(t)]. (3)

In addition to the equation of motion of the sphere we can also apply the condition that the total
mass contained within the sphere is constant, i.e.

M =
4π

3
ρ̄(t)[1 + δ(t)]R(t)3 = constant.

i.e. R(t) ∝ ρ̄(t)−1/3[1 + δ(t)]−1/3

R(t) ∝ ā(t)[1 + δ(t)]−1/3. (4)

Which provides a basic mass continuity relation. Therefore, we note that

δ > 1 ⇒ overdense⇒ reduced expansion rate

δ < 1 ⇒ underdense⇒ increased expansion rate.

Taking the second derivative of the mass continuity relation and neglecting 2nd order terms we
obtain

Ṙ ∝ ȧ[1 + δ(t)]−1/3 − aδ̇
3

[1 + δ(t)]−4/3

R̈ ∝ ä[1 + δ(t)]−1/3 − 2ȧ
δ̇

3
[1 + δ(t)]−4/3 − aδ̈

3
[1 + δ(t)]−4/3 + a

4δ̇2

3
[1 + δ(t)]−7/3

R̈

R
=

ä

a
− 2

3

ȧ

a
δ̇ − δ̈

3
, (5)

1How small is small? Smaller than the horizon scale but larger than the Jeans length (see later).
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Recalling that |δ| � 1 and neglecting the term δ̇2. Combining Equations 3 and 5 gives

ä

a
− 2

3

ȧ

a
δ̇ − δ̈

3
= −4π

3
Gρ̄(t)[1 + δ(t)]. (6)

Setting δ(t) = 0 gives
ä

a
= −4π

3
Gρ̄(t), (7)

which the Acceleration equation for a homogeneous universe. To obtain the time evolution of
density perturbations in an expanding universe, we subtract the homogeneous component of the
acceleration from Equation 6 to obtain the non-homogeneous component, i.e.

−2

3

ȧ

a
δ̇ − δ̈

3
= −4π

3
Gρ̄(t)δ(t)

δ̈ + 2Hδ̇ = 4πGρ̄(t)δ(t). (8)

Setting H = 0 defines the static case and we obtain

δ̈ = 4πGρ̄(t)δ(t), (9)

i.e. the overdensity increases as the sphere collapses (for δ > 1). In the case of an expanding
universe the term 2Hδ̇ represents the “Hubble drag” terms that describes the fact that with time,
the apparent expansion velocity of the universe dilutes the relative contribution of any peculiar
motion. The right hand side of Equation 8 can be re-written noting that

4πGρ̄(t) =
3

2
ΩM H2, (10)

to obtain,

δ̈ + 2Hδ̇ − 3

2
ΩM H2 δ = 0, (11)

where ΩM describes the normalised matter density of the universe. However, we must recall that
the term H(t) is determine the total mass-energy density of the universe. At early and late times
respectively, the ΩM term will not dominate the expansion . Consider a radiation dominated
universe at early times, i.e. ΩM � 1 and H = 1/2t. We can therefore re-write Equation 11 as

δ̈ +
1

t
δ̇ ≈ 0, (12)

which has the solution
δ(t) ≈ B1 +B2 ln t, (13)
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i.e., the density perturbation grow according to a slow logarithmic term as a function of time. At
late cosmic timesΩM � ΩΛ and H → HΛ. Therefore

δ̈ +HΛδ̇ ≈ 0 (14)

which has the solution
δ(t) ≈ C1 + C2e

−2HΛt, (15)

i.e., density fluctuations are effectively frozen at the amplitude when dark energy begins to dominate
the expansion history. This is effectively due to the dominance of the Hubble drag term. If we now
consider a matter dominated, Einstein-de Sitter universe2, i.e. ΩM = 1 and H = 2/3t we can write

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0. (16)

We guess that a power law solution of the form δ = Dtn is required and via substitution obtain

n(n− 1)Dtn−2 +
4

3
nDtn−1 − 2

3t2
Dtn = 0

n(n− 1) +
4

3
n− 2

3
= 0, (17)

which describes a quadratic equation with the solutions n = 2/3 and n = −1 – respectively referred
to as the growing and decaying mode. With increasing time the growing mode dominates over the
decaying mode and the time evolution of the density perturbations revert to

δ(t) ∝ t2/3 ∝ a(t) ∝ 1

1 + z
. (18)

We must remember that the preceding analysis is valid in the linear regime only, i.e. δ � 1.
Small density fluctuation therefore grow linearly with redshift until the assumption δ � 1 no longer
holds and the instability reaches the non–linear or collapse phase.

This equation provides an immediate requirement for an additional, non–coupled matter field within
the universe – dark matter. Consider the typical scale of temperature fluctuations at the epoch
of recombination, ∆T/T ∼ 10−5. These temperature fluctuations are associated with matter fluc-
tuations of similar amplitude and were fixed by the physics of the photon–baryon fluid until the
epoch of recombination. These fluctuations would have grown by a factor 1000 between the epoch
of recombination and the present day, reaching a level δ ∼ 10−2 today. This is clearly not consistent
with observations of large density contrasts (δ ∼ 100s) in the local universe. Non–linear collapse
could only have occurred if a large fraction of the available matter was not coupled to the radiation
field and entered the linear growth phase at some earlier epoch.

2This can be thought of as the “Goldilocks” model – conditions are “just right” for structure formation to proceed.
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6.3 Statistics of the density field - the power spectrum

Any attempt to describe of the physics of structure formation is concerned with the statistical,
rather than the individual, properties of the distribution of density perturbations. We can expand
the dimensionless density enhancement at some position ~r as a three dimensional Fourier series, i.e.

δ(~r) =
V

(2π)3

∫
δ~ke

−i~k.~rd3k, (19)

where the individual Fourier coefficients are expressed as

δ~k =
1

V

∫
δ(~r)ei

~k.~rd3r. (20)

Expanding the density field into its Fourier components reduces the description of large scale struc-
ture to a series of oscillating density waves of amplitude δ~k and co-moving wavenumber ~k and
wavelength λ = 2π/k. Strictly speaking each Fourier component is a complex number and can be
written in the form

δ~k = |δ~k| e
iφ~k , (21)

where φ~k is a phase constant. For |δ~k| � 1 each wavemode evolves independently according to

δ̈~k + 2Hδ̇~k −
3

2
ΩM H2 δ~k = 0, (22)

for wavemodes of proper wavelength λ = a(t)2π/k greater than the Jeans length and less than the
horizon scale at each epoch. The phase term remains constant as long as the density perturbation
at each wavemode remains small. The independence of each wavemode means that even after short
wavelength modes have reached |δ~k| ∼ 1 and begun to collapse, longer wavelength modes can still
evolve linearly according to Equation 22. In practical terms this means that large scale structures
can still be studies using linear theory even after smaller scale structures such as galaxies and
clusters have collapsed.

The power spectrum is defined as the mean square of the Fourier components, i.e.

P (k) = 〈|δ~k|
2〉. (23)

When the phases of each Fourier component are uncorrelated with each other then the physical
density field δ(~r) is said to be Gaussian. If the Gaussian field is also homogeneous and isotropic then
the power spectrum provides a complete statistical description of the density field. Furthermore, if
δ(~r) is a Gaussian field then the probability of a density perturbation δ existing at some random
location is given by the Gaussian distribution, i.e.

p(δ) =
1√
2πσ

exp

(
− δ2

2σ2

)
. (24)
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where the standard deviation is computed from the power spectrum

σ =
V

(2π)3

∫
P (k)d3k =

V

2π2

∫
P (k) k2 dk. (25)

The study of such Gaussian density fields is important as most inflationary models of the early
universe predict a homogeneous and isotropic Gaussian density field. In addition the inflationary
models of the universe predict that the power spectrum will take a simple power law form, i.e.

P (k) ∝ kn, (26)

with the favoured value of n = 1 being proposed by Harrison and Zeld’ovich in 1970. The Harrison
Zeld’ovich power spectrum is said to be scale invariant but what is the physical implication of this
statement?

Consider a sphere of comoving radius L placed at some random location in the universe. The mass
of the sphere is

M =
4π

3
L3ρ̄[1 + δ]. (27)

Note that here δ (no subscript) refers to a real space density fluctuation. The expectation value of
the mass contained in an ensemble of such spheres placed at random locations is

〈M〉 =
4π

3
L3ρ̄ (28)

The mean square mass fluctuation associated with the population of spheres may be written as〈(
M − 〈M〉
〈M〉

)2〉
= 〈δ2〉 ∝ k3P (k), (29)

where the wavenumber associated with the sphere is k = 2π/L. Note that we will justify this
statement of proportionality when we demonstrate that the real space correlation function is the
Fourier transform of the volume averaged power spectrum. The root mean square deviation is
defined via

δM

M
≡
〈(

M − 〈M〉
〈M〉

)2〉1/2

∝ k(3+n)/2 ∝ L−(3+n)/2 ∝M−(3+n)/6, (30)

where we have substituted P (k) ∝ kn and followed sensible changes of variable. If the power
spectrum is described by a power law index n < −3 then the amplitude of mass fluctuations
diverges on the largest scales which would invalidate the observed isotropy if the universe on very
large scales (the observed universe is effectively uniform on scales λ > 100 Mpc or k < 0.01 Mpc−1).
As an alternative, if we population the universe with a distribution of point masses and described
fluctuations via Poisson statistics we would obtain

δM

M
∝ N−1/2 ∝M−1/2, (31)
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noting that the number of particles within the sphere is N and that the mass of the sphere M ∝ N .
This distribution of fluctuations corresponds to n = 0. Therefore, the Harrison Zeld’ovich spectrum
produces greater statistical power on small scales (greater mass fluctuations at low mass) than a
Poisson distribution of points. The real simplicity of the Harrison Zeld’ovich spectrum becomes
clear when one considers that the potential fluctuations associated with a length scale L are

δΦ ∼ GδM

L
∝ δM

M1/3
∝M (1−n)/6, (32)

i.e. the case n = 1 ensures constant potential fluctuations on all scales.

6.4 The transfer function – the growth of structure in the linear regime

The evolution of the density power spectrum from its initial state is describe by a transfer function
of the form

P (k, zf ) = T (k, zf , zi, U)P (k, zi), (33)

where U = Ωb,ΩDM ,ΩΛ,ΩR, H0 describes the ‘background’ cosmology. In the limit of small density
perturbations each wavemode evolves independently.

The transfer function attempts to describe the growth of structure as a function of both scale and
universal epoch. It includes many physical effects but is limited to the linear regime, i.e. small
density perturbations. The transfer function is dominated by two considerations; the relative scale
of a given perturbation compared to the horizon at that epoch, and whether the universe is radiation
or matter dominated at that epoch. Major physical effects described within the transfer function
include:

1. Meszaros effect: the rapid expansion of the universe at early times (during the radiation
dominated epoch), ‘freezes’ the growth of structure on scales smaller than the horizon. Put
another way, the Hubble Drag term dominates and density fluctuations smaller than the
horizon scale are effectively fixed. Fluctuations outside the horizon grow normally and the
result is the relative suppression of structure smaller than a characteristic scale – given by the
horizon at matter–radiation equality.

2. Free–streaming of relativistic dark matter particles (as discussed in the previous lecture):
relativistic DM particles ‘free–stream’ with the growing horizon and damp density density
fluctuations on the horizon scale. This damping effect ceases when the DM particles become
non–relativistic. Free–streaming therefore damps structure on scales smaller than the horizon
at relativistic decoupling.

3. Acoustic horizon length: structure is further modified by pressure oscillations within the
photon–baryon fluid. Structures displaying wavemodes that are an integer fraction of the
sound horizon at the epoch of decoupling form a harmonic series of density enhancements.



6 LARGE–SCALE STRUCTURE 8

These structures form a series that has had just enough time to compress, compress–rarify,
compress–rarify–compress (etc.) once during the age of the universe. This effect dominates
form of the temperature correlation function observed in the CMB – in effect a ‘snapshot’ of
the transfer function.

4. Silk Damping: photons within the photo–baryon fluid travel a given ‘random walk’ distance
before scattering. This results in a diffusion of photons from density fluctuations and the
suppression of structure on scales smaller than the random walk distance. This distance is
20− 30 Mpc at the epoch of decoupling and is comparable to the horizon scale.

5. The Jeans scale: the Jeans relation describes baryonic structures whose self–gravity is sup-
ported by internal pressure. Structures that are Jeans stable do not collapse and structure is
suppressed on scales smaller than the Jeans scale. Consider a virialised cloud of particles at
the stability limit, i.e.

3NkT =
GM2

J

RJ

, (34)

where subscript J indicates the Jeans limit. Employing the relations N = MJ/µmp and
MJ = 4πρR3

J/3 one obtains the Jeans length

RJ =

(
3kT

µmp

. (Gρ)−1 .
3

4π

)1/2

= cs

√
π

Gρ
. (35)

The Jeans length is therefore proportional to the sound speed of baryons at each epoch. Prior
to decoupling the baryonic sound speed was determined by the properties of the relativistic
photon baryon fluid, i.e. cs = c/

√
3 = 0.58c. The corresponding value of the Jeans length

may be computed as

RJ = 0.58c×
√

π

6.67× 10−11 Nm2kg−2 × 5× 10−19 kmm−3
= 5.3× 1022 m ≈ 1.6 Mpc, (36)

where we have taken the physical baryon density at the epoch of decoupling. The associated
Jeans mass is of order 1020 M� which is several orders of magnitude larger than the most
massive galaxy cluster known. Immediately after decoupling the sound speed is given by the
expression

cs ≈

√√√√ kT

µmp

=

√√√√ kT

µmpc2
c =

√
0.26 eV

563 MeV
c = 2× 10−5c. (37)

The corresponding Jeans length and mass are respectively RJ = 1.84 × 1018m ≈ 50 pc and
MJ ≈ 4 × 106 M� which lies between the mass of a typical globular cluster and a dwarf
galaxy. Therefore, the epoch of decoupling marks an important transition in the development
of baryonic structure. Prior to decoupling all fluctuation scales up to the horizon scale are
effectively suppressed. After decoupling the Jeans scale is dramatically reduced and baryonic
structures can begin to grow.
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6. Fitting formulae: for a given cosmology and assumed DM properties, one may compute the
transfer function as a function of k at any given epoch. The transfer function is approximated
to a fitting formula in order to express the complex physical process via a single function.
Such expressions are good to within 10%. The recent work of Eisenstein and Hu (1998)
on the contribution of baryon oscillations to the transfer function has further improved the
accuracy.

6.5 Non–linear collapse: The isolated spherical halo

We now return to the evolution of a density perturbation – recall that we had previously described
the growth of such perturbations in the linear regime, i.e. δ � 1. To follow the collapse of an
isolated, spherical overdensity beyond the linear phase, we return to the exact equation of motion
of a test particle at the edge of a spherical sub-region of the universe.

d2r

dt2
= −GM

r2(
dr

dt

)
=

2GM

r
+ C. (38)

We consider the case C < 0, i.e. a bound, or closed, system. The exact solution takes the form

r = A(1− cos θ)

t = B(θ − sin θ) for θ = 0, 2π. (39)

We have

A =
Ωm0

2(Ωm0 − 1)

B =
Ωm0

2H0(Ωm0 − 1)3/2
. (40)

We also note that A3 = GMB2 and that C = −A2/B2. To better understand the relationship
between these constants start with

A3 = GMB2

Ω3
m0

8(Ωm0 − 1)3
=

GMΩ2
m0

4H2
0 (Ωm0 − 1)3

Ωm0 =
2GM

H2
0

=
8πG

3H2
0

· r3(t)ρ(t) =
ρ0

ρc,0
· r3

0. (41)
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Note that, as with a0, we are free to choose r0 = 1. The spherical overdensity expands until
θ = π and rmax = 2A then “turns around” and begins to collapse. Formal collapse occurs at
θ = 2π, r = 0, t = 2πB. At turnaround, or maximum expansion, we have

rmax = 2A =
Ωm0

Ωm0 − 1
(42)

tmax = πB =
πΩm0

2H0(Ωm0 − 1)3/2
(43)

What is the density of the spherical region at turnaround compared to an idealised EdS background
universe?

ρ

ρc
=

Ωm0 ρc0r
−3
max

ρc0 a−3
= Ωm0

(
a

rmax

)3

. (44)

For an EdS universe we have a = (3
2
H0t)

2/3.

a3(tmax) =
(

3

2
H0tmax

)2

=
9π2

16

Ω2
m0

(Ωm0 − 1)3
, (45)

using the above expression for tmax. Therefore

ρ

ρc
= Ωm0

9π2

16
· Ω2

m0

(Ωm0 − 1)3
· (Ωm0 − 1)3

Ω3
m0

=
9π2

16
= 5.55, (46)

using the appropriate expression for rmax. So the spherical overdensity starts to collapse when its
density has reached 5.55 times the background radius (linear theory gives a value of 1.06). Following
turnaround, one might naively expect formal collapse to occur at r = 0, t = 2πB. But if we follow
the equations to this point we expect ρ→∞ which is physically unrealistic.

6.6 Towards a virialised halo

Virialisation describes the process by which the gravitational collapse reaches an equilibrium state
described by the virial equation, i.e. P = −2K, E = P + K = −K and where the mean spatial
distribution of particles is constant with time (strictly speaking Ï = 0).

How does this occur? Even if the dark matter (DM) were completely collisionless and collapsing
on radial trajectories, each DM particle would oscillate about the halo centroid with an amplitude
equal to the turnaround radius. However, infall trajectories are not purely radial – DM particles are
subject to torques via gravitational interactions with nearby large-scale structure and gain angular
momentum as a result. Also the form of the DM power spectrum indicates that DM structure is
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present on all scales. Although DM is thought to be collisionless, such DM sub-structures can lose
gravitational potential energy via dynamical friction with the parent halo and spiral to the centre.

The combination of these effects lead in simulations fo the formation of a collapsed halo largely sup-
ported by random particle motions (pressure support) with a small net rotation. Such simulations
show that the halo mass is centrally concentrated according to a density function ρ(r). Energy
equipartition among DM particles generate an isothermal distribution where ρ ∝ r−2. This gives
M ∝ r and v2 = GM/r = constant.

Simulations of collisionless DM particles in an expanding universe indicate a different distribution,
first presented by Navarro, Frenk and White (1997) as

ρ ∝ 1

r(r + rS)2
, (47)

where rS is a scale radius. Therefore ρ ∝ r−γ where

γ → −1 at r � rS

γ → −3 at r � rS (48)

with γ = −2 occurring at r somewhat greater than rS.

Although virialisation is complex and non–linear, we can understand the properties of the virial
halo which results using energy arguments. What is the halo overdensity at virialisation? At
turnaround the kinetic energy is zero. Therefore P = E. At virial equilibrium we have P = −2K
and E = P +K = −K. Therefore P = 2E. As P ∝ GM/r the virial radius must be one-half of the
turnaround (maximum) radius. As rmax = 2A, rvirial = A. At this point the overdensity is 23 = 8
times more dense than at turnaround. When does this occur? We have

rvirial =
1

2
rmax

A(1− cos θ) = A

cos θ = 0

θ =
3π

2
(49)

noting that we require θ > π (virialisation must come after turnaround). The corresponding time
is

t = B(θ − sin θ)
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tvirial = B
(

3π

2
+ 1

)

= πB
(

3

2
+

1

π

)

≈ 1.81× tmax. (50)

The additional factor we must consider is that in the time interval between tmax and tvir the density
of the background EdS universe has decreased by a factor(

amax
avirial

)3

=
(
tmax
tvirial

)2

=
1

1.812
. (51)

Therefore, at virialisation the spherical region has a density relative to the background of 5.55 ×
8 × 1.812 ≈ 145. Note that if – as many sources do – you take tvirial to occur when r = 0,
you obtain tvirial = t(θ = 2π) = 2 tmax. In this case, the relative overdensity at virialisation is
5.55× 8× 22 ≈ 178, which is further approximated to δ = ρ−ρ̄

ρ̄
= 200 in textbooks and papers.

In general it is reasonable to expect a collapsing overdensity to achieve virial equilibrium when it
becomes ≈ 150 − 200 times the background density. This simple model is in agreement with the
results of simulations which indicate that at δ > 100 galaxies and clusters of galaxies emerge as
distinct, gravitationally-bound structures.

We can also estimate the redshift at which virialisation occurs in a general matter-dominated uni-
verse, assuming that the same results as above remain approximately true even when the background
density differs from critical. We denote the present-day normalised background density as Ωbg

m0. The
approximate virialisation condition is

ρvirial ≥ 100× 3Ωbg
m0H

2
0

8πG
(1 + zvirial)

3. (52)

We assume that the virialised halo is characterised by a velocity dispersion σ such that

1

2
Mσ2 =

1

2

GM2

r
(53)

which gives

r =
GM

σ2
. (54)

The density of the spherical region at virialisation is then

ρvirial =
M

4π
3
r3

=
M

4π
3
GM
σ2

=
3σ2

4πG3M2
(55)
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and the condition for virialisation becomes

3σ2

4πG3M2
≥ 100× 3Ωbg

m0H
2
0

8πG
(1 + zvirial)

3. (56)

This can be rearranged to yield

1 + zvirial <∼ 0.275× σ2(GM)−2/3(Ωbg
m0H

2
0 )−1/3 (57)

which scales as

1 + zvirial <∼ 0.6×
(

σ

100 kms−1

)2
(

M

1012M�

)−2/3

(Ωbg
m0h

2)−1/3. (58)

This is an approximate result but it gives some insight into when structures of different properties
formed. Take Ωbg

m0h
2 = 0.13 as a value representative of our universe. A large galaxy like the Milky

Way has σ ∼ 300 kms−1 and M ∼ 1012M�, and we find 1+zvirial ≤ 11. Thus we would be surprised
to discover a fully-formed galaxy at z � 10. Massive galaxy clusters have σ ∼ 1, 000 kms−1 and
M ∼ 1015M�, which gives 1 + zvirial ≤ 1.2 and indicates that such structures formed only recently
within our universe.

6.7 Non–linear collapse: N–body simulations

Current simulations of structure formation follow the evolution of density fluctuations from the
linear to non–linear (or collapse) phase via direct representation of the matter density field as an
N–body system of particles. The aim of all such models is to follow the distribution of density
fluctuations generated by the combination of the initial conditions and the linear growth regime
described in previous sections to the regime where δ � 1 and the local gravitational interaction of
dark matter clumps becomes important.

The equation of motion of an individual density fluctuation relates the velocity to a combination
of the Hubble Drag and the local gravitational field. Solution of this equation therefore reduces to
solving the local Poisson equation for a system of particles, i.e.

g

a
= −∇Φ

a2
= G

∑
i

mi
xi − x

|xi − x|3
. (59)

Direct computation is expensive. Therefore, to push such calculations to incorporate larger numbers
of particles for a given computational effort, the local Poisson equation may be expressed via the
Fourier transform of the velocity field and the equation of motion is solved in Fourier space. This is
the idea underlying Particle Mesh (PM) N–body codes: the density field described by the system of
particles is averaged onto a grid and a FFT is employed to compute the real space force components
resulting from this density field. Such limits are obviously limited by the mesh dimension which
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translates directly into spatial resolution. In addition, the larger the mesh, the more massive each
“mesh particle” – such particles represent a collection of less massive particles. Such massive virtual
particles suffer “close” interactions and wide angle scattering more than less massive counterparts
and thus crude mesh simulations can lead to unrealistic collapse models. The solution is to refine
the treatment of the mesh, i.e.

1. Particle–Particle–Particle–Mesh (P3M) codes: direct forces are computed between all particles
in adjacent cells with the FFT of the grid being employed to compute the contribution from
more distant mesh elements.

2. Adaptive mesh codes: the mesh size is flexible and varies such that higher density regions
are mapped by a finer mesh to preserve the number of particles per mesh within reasonable
limits.

Employing such procedures it is possible to create a three dimensional map of the dark matter
distribution as a function of epoch – the current state–of–the–art is to present universal “cubes” of
up to 100h−1 Mpc on a side versus redshift based upon systems of 108 to 109 particles. However,
additional refinements are required to translate such representations into a map of the visible large–
scale properties of the present universe, i.e. the distribution of baryonic matter:

1. N–body simulations on a number of physical scales. The large scale properties of the universe
can be described by large simulations mentioned above. However the mesh size represents a
limiting physical scale. Additional simulations are therefore required to trace the evolution
of successively smaller (i.e. less massive) structures in the universe, e.g. groups of galaxies to
individual galaxies (i.e. an accreting system of halos).

2. Gas physics: visible structures require star formation. To form stars one must channel baryons
to the central regions of dark matter potentials where the baryon density increases to levels
where fragmentation and collapse occurs. An additional model is then required to determine
at what rate the collapsing gas is transformed into stars and how this rate varies as a function
of time. Finally, a model is required to describe the evolution of the stellar population as a
function of time and its luminosity weighted spectral energy distribution – finally providing
the observed brightness and colour of the model galaxy population. Such prescriptions are
very model dependent and are often referred to a “semi–analytic” models of galaxy formation.

In summary therefore, the large scale distribution of visible structure may be related to the initial
conditions of the HBB model via the following ideas:

1. Assume an initial spectrum of density fluctuations – Harrison–Zeld’ovich.

2. Describe the linear growth of density fluctuations via the Transfer function.
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3. Upon reaching the limiting accuracy of the assumption of linear growth, feed the density
distribution into the initial conditions of an N–body simulation of collapsing structure.

4. Apply a model for the transport of baryonic gas within collapsing structures. This can be as
simple as computing the thermal energy of gas within a given potential and relating this to
the cooling properties of the gas at that temperature and density (Figure 1). We can relate
the thermal energy contained in the baryonic gas to their kinetic energy associated with the
orbital motion in the dark matter halo, i.e.

3

2
kT =

1

2
µmp〈v2〉 =

3

2
µmpσ

2
r , (60)

i.e.,

T =
(
µmp

k

)
σ2
r =

(
µmpc

2

k

)(
σr
c

)2

. (61)

Inputting velocity dispersion values representative of massive galaxy clusters (σr = 1000 kms=1)
and typical galaxies (σr = 100 kms=1) generates gas temperatures of order 7 × 107 K and
7× 105 K respectively. As the cooling timescale is tcool ∼ kT/Λ(T ) one can see that galaxies
occupy a region of the cooling curve where Λ(T ) satisfies dΛ/dT < 0 that the cooling time
decreases with decreasing temperature – the gas contained within the potential can cool ef-
fectively and the baryons will collapse. Galaxy clusters occupy a region of the cooling curve
where Λ(T ) satisfies dΛ/dT > 0 that the cooling time increases with decreasing temperature
– the gas contained within the potential cannot cool effectively and the baryons are prevented
from collapsing. This is why most of the baryons in galaxies are in the form of stars whereas
the majority of baryons in galaxy clusters are in the form of diffuse, hot gas.

5. Apply a model for the rate of star formation in cool gas. Advanced models describe the
distribution of cooling gas as a function of time within given halos to predict star formation
(resulting in abundance and colour) gradients within individual classes of galaxy.

6. Apply a model to describe the evolution and appearance of the stellar population thus created
as a function of time, e.g. Bruzual and Charlot.

This progression of ideas has come to be termed the “Hierarchical” model of galaxy and struc-
ture formation, i.e. structure forms in a hierarchical (bottom–up) fashion with baryon evolution
described by semi–analytic approximations.

6.8 The limit of gravitational physics: Scaling relations of galaxy clus-
ters

Our analytical description of the growth of structure in the universe has been naturally dominated
by gravitational physics. Simulations of our universe attempt to describe the properties of visible
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Figure 1: The cooling rate divided by the baryon density as a function of temperature for primordial
gas.

structures by combining gravitational physics with baryonic processes leading either to star forma-
tion (in the case of galaxies) or to emission from hot gas (in the case of galaxy clusters). However,
computer simulations are limited by the fact that they cannot simultaneously resolve the physical
scales on which gravitational processes dominate and those on which baryonic processes dominate
– hence the need for simple analytic rules to describe the unresolved baryons.

It is interesting to see how far we can proceed analytically from our gravitational description of
virialised halos to a description of the observed properties of such structures. We consider the
observed properties of galaxy clusters.

We have already seen that galaxy clusters may be described as an approximately spherical over-
density characterised by a velocity dispersion σ = 300− 1000 kms−1 and mass M = 1014− 1015 M�.
Approximately 5/6 of the mass is in the form of dark matter, 1/6 is in the form of hot, diffuse
baryons and the remainder (approximately 1%) is in the form of galaxies. The observed properties
of galaxy clusters are thus in principle dominated by bremsstrahlung emission from the hot baryons.
If we can link the bremsstrahlung emission to the mass of the cluster we can relate observed quan-
tities such as X-ray luminosity and temperature to the unobserved cluster mass. We can go further
and predict how luminosity should scale with temperature for a population of galaxy clusters drawn
from a range of masses and compare this to observations.

We begin by considering the relationship between gas temperature and mass in a virialised halo. We
use ∆ = ρ−ρ̄

ρ̄
≈ ρ/ρ̄ for ρ� ρ̄. We also consider that quantities such as mass and radius are measured

for regions of the cluster corresponding to a given overdensity ∆ w.r.t. to the background, i.e. M∆

is the cluster mass corresponding to the region forming an overdensity ∆ w.r.t. the background.
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The kinetic energy of the gas is

K =
3

2
NkT

∝ NkT ∝Mgas,∆kT

∝ M∆kT (62)

assuming a fixed ratio between baryons and dark matter, i.e. Mgas,∆ ∝M∆.

The potential energy is

P ∝ GM2
∆

R∆

(63)

and the virial relation gives P = −2K. We can therefore write

M∆kT ∝
M2

∆

R∆

. (64)

If we express R∆ in terms of the mean cluster density, R∆ ∝M
1/3
∆ ρ−1/3, to obtain

M∆ = (kT )3/2ρ−1/2. (65)

The mean density of the cluster is ρ = ∆ ρ̄ = ∆× 3H2

8πG
– assuming that ρ̄ = ρc (and this assumption

is not always made in the literature). We can further define H(z)/H0 = E(z) – which is simply a
version of the Friedmann equation – to obtain H(z) = E(z)H0, to obtain ρ = ∆ρc = ∆E2(z) and

M∆ ∝ (kT )3/2 ∆−1/2E−1(z) or (66)

kT ∝ M
2/3
∆ ∆1/3E(z)2/3. (67)

Note that using the E(z) formalism allows us to compare the properties of galaxy clusters observed
over a range of redshifts.

Having derived a relationship between gas temperature and cluster mass we next consider the
emission luminosity. At temperatures T > 106K the emission from the ionised gas is dominated
by collisional bremsstrahlung with a small contribution from heavy ion line emission. The X-ray
luminosity of bremsstrahlung emission may be written as

LX ∝
∫
ne ni T

1/2 dV

∝ ρ2(kT )1/2R3
∆. (68)
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Strictly speaking we should use ρgas in the above expression but I am here assuming an approximate

relationship ρgas ∝ ρ. Recall that R∆ ∝M
1/3
∆ ρ−1/3 to obtain

LX ∝ ρ(kT )1/2M∆. (69)

Taking ρ = ∆ ρc ∝ ∆E2(z), we can write

LX ∝ ∆E2(z)(kT )1/2M∆. (70)

We can now substitute in our mass-temperature relationship from Equation 67 to obtain

LX ∝ ∆E2(z)(kT )1/2 × (kT )3/2 ∆−1/2E−1(z)

∝ ∆1/2E−1(z)(kT )2

∝ T 2 (71)

for a sample of clusters of varying mass observed at fixed overdensity and corrected to a common
redshift. Is this what we observe?


