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Experimental results to date (2024): nada

LHC: the LHC sees no indication of dark matter
Or even supersymmetry

Direct Detection: Nothing so far

(DAMA claims a detection that no one can reproduce)

Indirect Detection: Various claims

gamma ray e
COSMIC ray ex
unidentified"

As yet: nothing credible.

WIMPs, as originally expected,
have been thoroughly falsified
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Lots of particle candidates for CDM:

WIMPs

Axions
Light dark matter
wimpzillas
etc.

Can imagine other candidates as well:

Warm DM
Self-interacting DM
Fuzzy DM
Superfluid DM

etc.




Structure formation with dark matter that is

Hot DM Warm DM Cold DM

Free streaming scale:
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So only structures larger than the largest
clusters of galaxies form with hot dark

matter of mass my < 30 eV.

Neutrinos of mass m, > 0.06 eV have some effect even in a
CDM universe, ergo the structure formation limit m, < 0.12 eV.
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For cold dark matter with my ~ 100 GeV.



Warm Dark Matter
(WDM)

Free streaming scale imprints a small-scale
cut-off on the power spectrum:
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Self-Interacting Dark Matter

Dark matter self-interactions
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What if dark matter
interacts with itself?

(SIDM)
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Simulations with SIDM
suggest it might create
cores rather than cusps

In order for dark matter to self-interact, there needs to be a new force that
is only active in the dark sector (mediated, e.g., by dark photons). The
interaction cross section needs to be a function of velocity in order to make
cores in galaxies but not huge ones in clusters of galaxies.



Self-interacting dark matter

Phys.Rept. 730 (2018) 1-567
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* Collisionless CDM-only simulations predict “cuspy” DM
density profiles, while observation prefer “core”.

« Others: Missing satellites problem, Rotation curve diversity
problem, Too-big-to-Fail problem.

« SIDM is leading candidate to solve these issues.

CHEP2018 Light-mediator DM in PandaX 9



SIDM with a constant self-interaction cross-section does not work simultaneously for
both galaxies and clusters, so a velocity-dependent cross-section 1s often considered.
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Figure 1: RSIDM cross section per unit of mass as a function of the velocity. Best-fit curves to data [15] for S-wave (left) and P
-wave scatterings (right). The latter is also the best-fit curve for L > 1 after rescaling the mass with Eq. (8). Here m =mS -1/3 .

X. Chu, C. Garcia-Cely, H. Murayama (2019, PRL)



Fuzzy Dark Matter
(FDM)

Fuzzy DMI!I consist of extremely light scalar particles with masses on the order of 107%? eV.
At this extraordinarily low mass, particles have a Compton wavelength on the order of a pc,
manifesting 1n quantum wave behavior on astrophysical scales. The wave behavior leads to

interference patterns, causing spherical soliton cores 1n dark matter halos,[?! and cylindrical

soliton-like cores 1in dark matter cosmic web filaments. (3]

Good: The soliton core has a constant density, hence addressing the cusp-core problem.
Bad: This creates a new problem, as the absolute density of the soliton 1s far too large to fit
the data for real galaxies.
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Superfluid Dark Matter
(SFDM)

A type of DM particle that can form a Bose-Einstein condensate.
This results in dark matter halos with a superfluid core but which
behave like CDM on larger scales. The idea is to obtain MOND-

like behavior on galaxy scales while retaining the successes of

CDM on larger scales.
Khoury 2021 (2109.10928)

Particles must be of mass m, < (p/ )4 ~ 3 eV with
a critical condensate temperature 7, = 0.2 mK.


https://arxiv.org/abs/2109.10928

Snowmass-2013 Cosmic Frontier 3 (CF3) Working Group Summary: Non-WIMP dark matter
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ADMX Achieved and Projected Sensitivity
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Figure 2. The search reach of the ADMX RF-cavity experiments over the next 3 years. The first decade of
allowed axion mass will be explored at “definitive” sensitivity to QQCD axions over the next year. The middle
decade will be explored at over the following two years. These two decades are expected to encompass the

mass of the dark matter axion. 2015
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An axion is a hypothetical particle originally
postulated by the Peccei—Quinn theory in 1977
to resolve the strong CP problem in quantum
chromodynamics (QCD). If axions exist and
have low mass within a specific range, they are

of interest as a possible component of CDM. 104
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Figure 3. The landscape of axion searches. The vertical axis is the axion’s coupling to two photons. The
horizontal axis is the axion’s mass. The diagonal lines are the expected range in coupling for the QCD axion.
The allowed QCD axion window is approximately between 1 ueV and 1 meV. Dark matter QCD axions are
in the approximate mass range 1 peV to 100 peV, with the bounds having considerable uncertainties. Also
shown are upper limits from SN1987A (also white dwarfs) and HB stars (the red giant bound). Sensitivities
of various technologies are also shown (“Laser”, etc.). The QCD (PQ) dark-matter axions will be explored
with high sensitivity in the next decade by RF-cavity experiments. The solar experiments (CAST and
[AXO) have sensitivity a a large part of the non-P(Q search space and the upper end of the QCD axion
window. Of course, there could be surprises in both mass and couplings.
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Figure 4. Sterile neutrino parameters to the right of the solid red curve are excluded by the X-ray
observations, if the sterile neutrinos make up all of dark matter. If the sterile neutrino abundance is
determined by neutrino oscillations and no other mechanism contributes, then the excluded region is smaller
(shaded area). Lower bounds from structure formation depend on the production mechanism, because they
constrain the primordial velocity distribution whose connection to mass and mixing is model dependent.

Also shown is the range in which the pulsar velocities can be explain by anisotropic emission of sterile
neutrinos from a supernova.
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Strange Nuggets

aka macros
aka quark nuggets

1.e., a dark matter candidate
composed of nuclear density
matter, like a neutron star.
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Current and projected limits on quark nuggets. See Refs. [333, 334] for discussion.
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P. W. Gorham, “Antiquark nuggets as dark matter: New constraints and detection prospects,”
Phys. Rev. D86 (2012) 123005, arXiv:1208.3697.

K. Lawson and A. R. Zhitnitsky, “Quark (Anti) Nugget Dark Matter,” arXiv:1305.6318.



DM types

Motivation Etc.

* Apparent dynamical mass exceeds
visible baryonic mass

MSSM

* Need to grow structure by 105

* Third peak of CMB power spectrum

* thisis an important corroborative after-
result rather than a motivation.




