DARK MATTER

ASTR 333/433
SpRING 2024
TR 11:30AM-12:45PM
Sears 552
http://astroweb.case.edu/ssm/ASTR333/

Prof. Stacy McGaugh

Sears 558
368-1808
stacy.mcgaugh@case.edu

Sizes and masses of galaxies

Surface brightness: conversion between linear Σ in $\mathrm{L}_{\odot} \mathrm{pc}^{-2}$ and logarithmic μ in magnitudes arcsecond ${ }^{-2}: \mu=21.57+\mathrm{M}_{\odot}-2.5 \log \Sigma$ where the absolute magnitude of the sun M_{\odot} is bandpass-specific. See useful numbers page and astronomical magnitude systems.

Early Type Galaxies typically modeled as de Vaucouleurs $\mathbf{r}^{1 / 4}$ profiles

The surface brightness profile is obtained by fitting ellipses to galaxy images, as in this example from Schombert (2007) using ARCHANGEL.
nge3193_j.clean

each point corresponds to one ellipse on the image

Galaxies are made of gas as well as stars

NGC 6946

optical

near infrared

NGC 6946 stars \& gas

Beware selection effects! Catalogs are always dominated by brightest objects

Galaxy mass function from the GAMA survey
The apparent numbers of galaxies in magnitudelimited samples decreases with decreasing mass, while their intrinsic numbers increase.

Moffett et al. 2016, MNRAS, 457, 1308

The stuff between the stars

Atomic gas (H I)
 Molecular gas (H_{2})
 Ionized gas (H II)
 Dust

Explanatory links at NRAO
H I: http://www.cv.nrao.edu/course/astr534/HILine.html
H_{2} : http://www.cv.nrao.edu/course/astr534/MolecularSpectra.html
$\mathrm{HI}:$ atomic hydrogen in the interstellar medium

21 cm emission from hyperfine transition: parallel to anti-parallel spins

$$
\nu=\frac{8}{3} g_{I} \frac{m_{e}}{m_{p}} \alpha^{2} R_{m} c=1420.405751 \mathrm{MHz}
$$

The 2 l cm line is in the radio at 1420 MHz

The atomic gas of the ISM is often more extended than the stars
NGC 2403
stars
atomic gas

Fraternali, F., Oosterloo, T., Sancisi, R., van Moorsel, G.A. 2001, ApJ, 562, L47
emission coefficient

$$
A_{U L}=\frac{64 \pi^{4}}{3 h c^{3}} \nu^{3}\left|\mu^{*}\right|^{2}
$$

The radiative half-life of this transition is II Myr. This is readily maintained in equilibrium even in a cool (~100 K), diffuse ISM (< I atom/cc)

Counting 21 cm photons is equivalent to counting hydrogen atoms - a direct relation to mass!

$$
M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}
$$

Gives mass in solar masses for
D in Mpc and measured flux
$F_{H I}$, the flux integral in Jy-km/s

$$
1 \mathrm{Jy}=10^{-26} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}
$$

Molecular ISM

Cold (~30 K),"dense" (> 100 molecules/cc) phase of the ISM
Very clumpy, with low filling factor - much of the H_{2} mass is in Giant Molecular Clouds ($\sim 10^{6} \mathrm{M}_{\mathrm{o}}$). This is where stars form.

> Diatomic molecules $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}\right)$ boring or at least hard to excite, as they have no dipole moment.

Polar molecules (esp. CO) have a permanent dipole moment thanks to asymmetry so have a rich rotational spectrum (typically in the mm or cm wavelengths).

$$
M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O}
$$

assuming the conversion factor

$$
X_{C O}=2.8 \times 10^{20} \mathrm{~cm}^{-2}(\mathrm{~K} \mathrm{~km} / \mathrm{s})^{-1}
$$

which is calibrated by estimating the virial mass of nearby molecular clouds

Often CO observations are not available, in which case one approach is to use scaling relations: the amount of molecular gas is proportional to the star formation rate and the stellar mass.

Metallicity Dependence of the Hydrogen Fraction

Typically we measure the mass of hydrogen gas (e.g., M_{HI}). This needs to be corrected to account for the presence of helium and metals.
$\mathrm{X}=$ hydrogen fraction (primordial fraction $3 / 4$)
$\mathrm{Y}=$ helium fraction (primordial fraction $1 / 4$)
$Z=$ everything else

As galaxies evolve, they form stars which make metals. Consequently, the metallicity correlates with stellar mass

$$
X=0.75-38.2\left(\frac{M_{*}}{M_{0}}\right)^{\alpha}
$$

with $\alpha=0.22$ and $M_{0}=1.5 \times 10^{24} \mathrm{M}_{\odot}$
For a low mass dwarf galaxy, $X^{-1}=1.34$, while for a Milky Way mass galaxy, $X^{-1}=1.41$.

Dust: the dust itself has negligible mass, but it can affect mass-to-light ratio estimates for stars
Dust-absorbs UV \& optical radiation; re-emits in the IR

Stellar populations

- Simple Single Population (SSP)
- stars of all masses born at the same time
- e.g., a star cluster
- Complex stellar population
- Convolution of many star forming events
- need to know
- IMF (initial mass function)
- Birthrate (star formation rate history)

globular cluster

Stellar population

 synthesis modeling:

Stellar population synthesis modeling is on way to estimate the stellar mass-to-light ratio.

Stellar population models

Typically, redder colors mean higher mass-to-light ratios

Color-M/L relation: $\quad \log \Upsilon_{*}^{i}=a_{i}+b_{i}(B-V)$

Can use multiple colors, but most of the information is in the first one.

Table 5
Self-Consistent Population Synthesis Mass-to-Light Ratios

Model	a_{V}	b_{V}	α_{I}	β_{I}	$\alpha_{[3.6]}$	$\beta_{[3.6]}$	$\Upsilon_{0.6}^{V}$	$\Upsilon_{0.6}^{I}$	$\Upsilon_{0.6}^{[3.6]}$
Bell et al. (2003)	-0.628	1.305	-0.259	0.565	-0.313	-0.043	1.43	1.20	0.46
Portinari et al. (2004)	-0.654	1.290	-0.302	0.644	-0.575	0.394	1.32	1.22	0.46
Zibetti et al. (2009)	-1.075	1.837	-0.446	0.915	-1.115	1.172	1.07	1.27	0.39
Into \& Portinari (2013)	-0.900	1.627	-0.394	0.820	-0.841	0.771	1.19	1.25	0.42

Baryonic Mass of Galaxies

$$
\begin{array}{r}
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+X^{-1}\left(M_{H I}+M_{H_{2}}\right) \\
X^{-1} \approx 1.33-1.42
\end{array}
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- $Y_{\ddot{i}}^{i}$ is the stellar mass-to-light ratio in photometric band i
- Gas
- Atomic gas - H I
- $M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}$
- Molecular gas - H_{2}

$$
M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O}
$$

also scales with stellar mass $\quad M_{H_{2}} \approx 0.07 M_{*}$

Multi-dish radio synthesis telescope arrays give brightness temperature (Hı surface density) \& velocity

HI map "moment zero" surface density of atomic gas

Velocity field "moment one" doppler shifts of atomic gas
from 3D data cube of 21 cm position and redshift

Multi-dish radio telescope arrays give surface density and velocity

Galaxy Dynamics in THINGS - The HI Nearby Galaxy Survey

Image credits:
VA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08

M33 velocity field

Rotation curves extracted using "tilted ring" fits

Fit ellipses that most closely match the circular velocity at a given radius. In principle, get ellipse center, position angle, axis ratio, inclination, and rotation velocity. In practice, usually have to fix some of these parameters.
titled ring model

NGC 6822 (Weldrake \& de Blok 2003)

$$
V \sin i=V_{s y s}+V_{c} \cos \theta+V_{r} \sin \theta
$$

titled ring model

observed velocity fields

Bosma (1981)

HI velocity fields demonstrated flat rotation curves to large radii

Galaxy Dynamics in THINGS - The HI Nearby Galaxy Survey

Image credits:
VA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08

