DARK MATTER

ASTR 333/433 Spring 2024 TR 11:30am-12:45pm Sears 552

http://astroweb.case.edu/ssm/ASTR333/

PROF. STACY MCGAUGH SEARS 558 368-1808 stacy.mcgaugh@case.edu

Sizes and masses of galaxies

Late Type Galaxies are typically Exponential disks

$$\Sigma(R) = \Sigma_0 e^{-R/R_d}$$

Azimuthally averaged light distribution approximately exponential for spiral disks.

Surface brightness: conversion between linear Σ in L_o pc⁻² and logarithmic μ in magnitudes arcsecond⁻²: $\mu = 21.57 + M_{\odot} - 2.5 \log \Sigma$ where the absolute magnitude of the sun M_{\odot} is bandpass-specific. See <u>useful numbers page</u> and <u>astronomical magnitude systems</u>.

Early Type Galaxies typically modeled as de Vaucouleurs r^{1/4} profiles

see Schombert (2015) AJ, 150, 162

Galaxies are made of gas as well as stars

NGC 6946

optical

near infrared

NGC 6946 stars & gas

 \sim Late Type Galaxies $010_{10_{10}}11_{1}$ < 5 (Sa-Sbc); T < 1 • T = 5 (Sc) $\bullet T = 6 (Scd)$ cold gas mass $\circ T > 6$ \bigcirc Ø \sim $\overline{}$ \heartsuit $\overline{}$ 6

Gas and Stars in Galaxies

Beware selection effects! Catalogs are always dominated by brightest objects

The apparent numbers of galaxies in magnitudelimited samples decreases with decreasing mass, while their intrinsic numbers increase.

Galaxy mass function from the GAMA survey

Moffett et al. 2016, MNRAS, 457, 1308

Atomic gas (H I) Molecular gas (H₂) Ionized gas (H II) Dust

Explanatory links at NRAO

H I: http://www.cv.nrao.edu/course/astr534/HILine.html

H₂: http://www.cv.nrao.edu/course/astr534/MolecularSpectra.html

ISM

The stuff between the stars

HI: atomic hydrogen in the interstellar medium

21 cm emission from hyperfine transition: parallel to anti-parallel spins

$$\nu = \frac{8}{3} g_I \frac{m_e}{m_p} \alpha^2 R_r$$

 $_m c = 1420.405751 \text{ MHz}$

The 21 cm line is in the radio at 1420 MHz

The atomic gas of the ISM is often more extended than the stars

Fraternali, F., Oosterloo, T., Sancisi, R., van Moorsel, G.A. 2001, ApJ, 562, L47

NGC 2403

emission coefficient

The radiative half-life of this transition is 11 Myr. This is readily maintained in equilibrium even in a cool (~100 K), diffuse ISM (< 1 atom/cc)

 $A_{UL} = \frac{64\pi^4}{3hc^3}\nu^3|\mu^*|^2$ Bohr magneton

Counting 21 cm photons is equivalent to counting hydrogen atoms - a direct relation to mass!

$M_{HI} = 2.36 \times 10^5 D^2 F_{HI}$

Gives mass in solar masses for *D* in Mpc and measured flux F_{HI} , the flux integral in Jy-km/s

 $1 \text{ Jy} = 10^{-26} \text{ Wm}^{-2} \text{ Hz}^{-1}$

Very clumpy, with low filling factor - much of the

seen in CO $\Lambda 51$

Molecular ISM

- Cold (~ 30 K), "dense" (> 100 molecules/cc) phase of the ISM
- H_2 mass is in Giant Molecular Clouds (~10⁶ M_o). This is where stars form.

dipole moment.

Polar molecules (esp. CO) have a permanent dipole moment thanks to asymmetry so have a rich rotational spectrum (typically in the mm or cm wavelengths).

 $M_{H_2} = 1.1 \times 10^4 D^2 F_{CO}$

assuming the conversion factor

which is calibrated by estimating the virial mass of nearby molecular clouds

Diatomic molecules (H_2, N_2, O_2) boring or at least hard to excite, as they have no

$$X_{CO} = 2.8 \times 10^{20} \mathrm{cm}^{-2} (\mathrm{K \ km/s})^{-1}$$

Often CO observations are not available, in which case one approach is to use scaling relations: the amount of molecular gas is proportional to the star formation rate and the stellar mass.

McGaugh et al. (2020, RNAAS, 4, 45)

Metallicity Dependence of the Hydrogen Fraction

Typically we measure the mass of hydrogen gas (e.g., $M_{\rm HI}$). This needs to be corrected to account for the presence of helium and metals.

X = hydrogen fraction (primordial fraction 3/4)Y = helium fraction (primordial fraction 1/4)Z = everything else

As galaxies evolve, they form stars which make metals. Consequently, the metallicity correlates with stellar mass

$$X = 0.75 - 38.2 \left(\frac{M_*}{M_0}\right)^{\alpha}$$

with $\alpha = 0.22$ and $M_0 = 1.5 \times 10^{24} M_{\odot}$

For a low mass dwarf galaxy, $X^{-1} = 1.34$, while for a Milky Way mass galaxy, $X^{-1} = 1.41$.

(McGaugh et al. 2020, RNAAS, 4, 45)

Dust: the dust itself has negligible mass, but it can affect mass-to-light ratio estimates for stars

Dust-absorbs UV & optical radiation; re-emits in the IR

Stellar populations

• Simple Single Population (SSP) – stars of all masses born at the same time – e.g., a star cluster

- Complex stellar population
 - Convolution of many star forming events
 - need to know
 - IMF (initial mass function)
 - Birthrate (star formation rate history)

open cluster

globular cluster

Stellar population models

Color-M/L relation: $\log \Upsilon^i_* = a_i$

Table 5 Self-Consistent Population Synthesis Mass-to-Light Ratios

Model	a_V	b_V	α_I	β_I	$lpha_{[3.6]}$	$eta_{[3.6]}$	$\Upsilon^V_{0.6}$	$\Upsilon^I_{0.6}$	$\Upsilon^{[3.6]}_{0.6}$
Bell et al. (2003) Portinari et al. (2004) Zibetti et al. (2009) Into & Portinari (2013)	$-0.628 \\ -0.654 \\ -1.075 \\ -0.900$	$1.305 \\ 1.290 \\ 1.837 \\ 1.627$	$-0.259 \\ -0.302 \\ -0.446 \\ -0.394$	$\begin{array}{c} 0.565 \\ 0.644 \\ 0.915 \\ 0.820 \end{array}$	$-0.313 \\ -0.575 \\ -1.115 \\ -0.841$	$-0.043 \\ 0.394 \\ 1.172 \\ 0.771$	$1.43 \\ 1.32 \\ 1.07 \\ 1.19$	$1.20 \\ 1.22 \\ 1.27 \\ 1.25$	$\begin{array}{c} 0.46 \\ 0.46 \\ 0.39 \\ 0.42 \end{array}$

Typically, redder colors mean higher mass-to-light ratios

$$a_i + b_i (B - V)$$

Can use multiple colors, but most of the information is in the first one.

Baryonic Mass of Galaxies

$$M_b = M_* + M_g = \Upsilon_* L + X^{-1} \left(M_{HI} + M_{H_2} \right)$$

• Stars $M_* = \Upsilon^i_* L$

• Gas

- Atomic gas H I
 - $M_{HI} = 2.36 \times 10^{-5}$
- Molecular gas H₂
 - $M_{H_2} = 1.1 \times 10^4$.

also scales with stellar mass $M_{H_2} pprox 0.07 \, M_*$

 $X^{-1} \approx 1.33 - 1.42$

$$L_i = 4\pi D^2 F_i$$

• Υ^i_* is the stellar mass-to-light ratio in photometric band *i*

$$^{5}D^{2}F_{HI}$$

$$D^2 F_{CO}$$

Multi-dish radio synthesis telescope arrays give brightness temperature (HI surface density) & velocity

HI map "moment zero" surface density of atomic gas

from 3D data cube of 21 cm position and redshift

Velocity field "moment one" doppler shifts of atomic gas

Galaxy Dynamics in THINGS — The HI Nearby Galaxy Survey

Multi-dish radio telescope arrays give surface density and velocity

Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08

M33 velocity field

Rotation curves extracted using "tilted ring" fits

Fit ellipses that most closely match the circular velocity at a given radius. In principle, get ellipse center, position angle, axis ratio, inclination, and rotation velocity. In practice, usually have to fix some of these parameters.

titled ring model

isovelocity contours

Bosma (1981)

observed velocity fields

Galaxy Dynamics in THINGS — The HI Nearby Galaxy Survey

HI velocity fields demonstrated flat rotation curves to large radii

VLA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08