DARK MATTER

ASTR 333/433 Spring 2024 TR 11:30am-12:45pm Sears 552

http://astroweb.case.edu/ssm/ASTR333/

PROF. STACY MCGAUGH SEARS 558 368-1808 stacy.mcgaugh@case.edu

HOMEWORK DUE NEXT TIME

Basic Picture:

Galaxies are embedded in extended, quasi-spherical halos of dark matter

Dark Matter Halo

Luminous Galaxy stars, gas, dust, etc.

 $R_{vir} \gg R_*$

The virial radius of the dark matter halo is much larger than the luminous galaxy

Dark Matter Halo models

3D density profiles

Both models have 2 parameters - a characteristic density and scale radius

NFW arises in pure, dark matter only (DMO) simulations

pseudo-isothermal $\rho(r) = \frac{\rho_0}{1 + (r/R_c)^2}$

older empirically motivated $\rho(r) \sim r^{-2}$ gives a flat rotation curve theoretically reminiscent of an isothermal distribution

NFW

now old new normal theoretically motivated

 $\rho(r) = \frac{\rho_s r_s^5}{r_s^6 + r_s^5}$ $r(r + r_{s})^{2}$

an analytic approximation to the results of numerical simulations

Density profiles of simulated dark matter halos

R (kpc)

NFW halo

$$\rho(r) = \frac{\rho_s r_s^3}{r(r+r_s)^2}$$

Can also define an overdensity Δ

$$M_{\Delta} = \frac{4\pi\Delta}{3} \rho_{crit} r_{\Delta}^3$$

Conventionally take `virial' $\Delta = 200$

$$V_{200}^2 = \frac{GM_{200}}{r_{200}}$$

 $M_{200} = (3.3 \times 10^5 \text{ M}_{\odot} \text{ km}^{-3} \text{ s}^3) V_{200}^3$

halo mass

concentration

$$c = \frac{r_{200}}{r_s}$$

Many galaxies - especially LSBs - have upper limits on c that are unacceptably low. This is one indication of the "cusp-core problem."

The central "cuspy" profiles predicted for dark matter halos are not always observed; much of the data prefer a nearly constant density core (like a pseudo-isothermal halo).

Kuzio de Naray et al. (2008)

Inner density profiles of dark matter halos

 $ho \sim r^{lpha}$

Oh et al (2011) AJ, 141, 193

DM HALO MODELS many flavors have ben suggested

- pseudo-isothermal empirically motivated
- NFW DMO simulations
- Burkert merges pISO inner core and NFW outer profile
- Einasto NFW with an extra parameter to tweak the profile shape
- DC14 from simulations with baryons
- coreNFW from other simulations with baryons
- generic alpha-beta-gamma (inner-middle-outer power law density profiles)

NFW halos **triaxial**. More massive halos less round

perhaps because they are still building up hierarchically?

percentiles, and the dotted lines show the 2.5th and 97.5th percentiles. The error bar gives the Poisson error on the median.

Maccio et al (2007) Concentration, spin and shape of dark haloes 63

Figure 6. Relation between \bar{q} and $M_{\rm vir}$ for different subsamples of haloes. The solid lines show the 50th percentile, dashed lines show the 16th and 84th

As well as the average density profile, there is also the 3D shape

a > b = c

a > b > ca = b > c

Simulations blobby and even more complicated

Galaxy formation is hierarchical in [L]CDM (*not* monolithic)

Small objects conglomerate to make big ones

Small halos form first, then merge to make ever bigger halos

Merger tree from Illustris simulation

Gray: dark matter halos

Blue: gas rich disks

Red: elliptical merger remnant

Sometimes it is imagined that a disk re-forms around an elliptical to form a bulge+disk system. The newly formed disk will only contain stars dating from this epoch.

Hierarchical Galaxy Formation

But: remember limits from Toth & Ostriker (1992)

Baryonic effects Effects that might alter halo structure

- Pristine NFW halos form in DMO simulations
- Baryons fall into DM halos
 - some baryons cool & condense
 - star formation
 - - might make DM halo less concentrated

• Adiabatic contraction: DM halo adjusts to sinking of baryonic component • makes DM halos more centrally concentrated, making cusp/core problem worse

• Feedback from SF injects energy into surrounding gas via winds & SN (etc.)