
Anisotropy Essentials

ORBITAL ANISOTROPY AND THE JEANS EQUATION

In general, the orbits of particles (e.g., stars) that trace the gravitational potential are non-circular. Indeed, they

can be of varied eccentricity and orientation, and the mean and distribution of these parameters can be a function

of position — not just radius, but also orientation. This orbital anisotropy makes the interpretation of line-of-sight

velocity measurements dependent on our viewing angle. One way to cope with this is the Jeans equation, for which

the mass estimator can be written
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where σr is the velocity dispersion in the radial direction within the object, n∗ is the number density of tracer particles,

and β is the anisotropy parameter, which is defined as
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where σt is the velocity dispersion in the tangential direction orthogonal to σr. Note that the ratio σ2
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measures a ratio of kinetic energy, quantifying the relative amount of support in rotation and pressure. In the limit

of complete pressure support, σt ≪ σr, so β → 1. In the opposite limit of a dynamically cold, rotationally supported

system, σt ≫ σr and β → −∞. Note also that the logarithmic derivative terms are pure numbers, so simpler than

they look. For example, if the number density of tracers falls off as a power law like n∗ ∼ r−3, then −dn∗/dr = 3.

Similarly, the other quantities inside the parentheses are dimensionless numbers of order unity.

The velocity dispersions σr and σt are internal to the object for which the natural reference frame is at the object’s

center. Consequently, these quantities are not the same as the observable line-of-sight velocity dispersion σlos. In the

absence of information to constrain β, a common assumption is that orbits are anisotropic so that β = 0. This is

convenient, but it need not be true, and examination of the mass estimator above reveals a degeneracy between the

mass and anisotropy: what you get for the mass depends on what you assume about the anisotropy. It is therefore

desirable to break the anisotropy when possible, e.g., by measuring the relevant quantities for two or more types of

tracer particles. There are some nearby dwarf satellites where this can be done separately for young and old populations

of stars.

In general the anisotropy parameter can vary as a function of radius. Consider, for example, an early type spiral

with both bulge and disk. At small radii where the bulge dominate, β ≈ 0 might be appropriate, but further out

where the disk dominates, β ≪ 0. For disk geometries where rotation dominates, it is convenient to rewrite the Jeans

equation as
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where Vc is the circular velocity of the potential, vϕ is the velocity in the azimuthal direction, and

√
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the radial velocity dispersion in the plane of the disk. In this case, the azimuthal velocity vϕ is almost the rotation

speed, but not quite: we want the true circular speed Vc but orbits usually have a little eccentricity. As a consequence,

stars tend to lag the circular speed by an amount that is quantified by the second term on the right hand side. This

‘asymmetric drift’ is usually a small correction in disk galaxies, but is not always negligible. Within the Milky Way, the

asymmetric drift is known to be a function of the age of stellar populations, ranging from ≲ 10 km s−1 for young stars

to ≳ 40 km s−1 for old stars. Stars are born on nearly circular orbits (vϕ ≈ 220 km s−1) but some mechanism scatter

them over time, diverting some of their azimuthal motion into radial motion, thus causing their orbital eccentricity to

grow so they lag progressively behind the circular speed of the potential.
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