NFW Density Profile

Halo only

Navarro, Frenk \& White (1996, ApJ, 462, 563) define the spherical density profile

$$
\rho(r)=\frac{\rho_{s} r_{s}^{3}}{r\left(r+r_{s}\right)^{2}}
$$

This integrates to a mass profile

$$
M(r)=4 \pi \rho_{s} r_{s}^{3}\left[\ln (1+x)-\frac{x}{1+x}\right]=M_{*}\left[\ln (1+x)-\frac{x}{1+x}\right]
$$

where $x=r / r_{s}$ and $M_{*}=4 \pi \rho_{s} r_{s}^{3}$. For small x,

$$
M(x) \simeq M_{*}\left[\frac{x^{2}}{2}-\frac{2 x^{3}}{3}+\frac{3 x^{4}}{4}\right] \simeq 2 \pi \rho_{s} r_{s} r^{2}
$$

The gravitational potential is the work done

$$
\Phi(r)=-\int_{r}^{\infty} \frac{G M\left(r^{\prime}\right)}{r^{\prime 2}} d r^{\prime}
$$

Inserting the above expression for $M(r)$, we obtain

$$
\Phi(r)=-\frac{G M_{*}}{r_{s}} \frac{\ln (1+x)}{x} .
$$

Notice that this does tend to zero as $r \rightarrow \infty$ even though the total mass is logarithmically divergent. At small radii

$$
\Phi(r) \simeq-\frac{G M_{*}}{r_{s}}\left[1-\frac{x}{2}+\frac{x^{2}}{3}-\frac{x^{3}}{4}\right]
$$

The radial acceleration is

$$
-\frac{d \Phi}{d r}=\frac{G M_{*}}{r_{s}^{2}}\left[\frac{1}{x(1+x)}-\frac{\ln (1+x)}{x^{2}}\right]
$$

and the circular speed is

$$
V^{2}(r)=\frac{G M_{*}}{r}\left[\ln (1+x)-\frac{x}{1+x}\right]
$$

Since

$$
\kappa^{2}=2 \Omega\left(\Omega+\frac{d V}{d r}\right) \equiv \frac{2 V^{2}}{r^{2}}+\frac{1}{r} \frac{d V^{2}}{d r}
$$

we find

$$
\kappa^{2}(r)=\frac{G M_{*}}{r^{3}}\left[\ln (1+x)-\frac{x}{1+x}+\frac{x^{2}}{(1+x)^{2}}\right] .
$$

NFW introduce the "virial radius" r_{200}, inside of which the average density is $200 \rho_{\text {crit }}$, with $\rho_{\text {crit }}=3 H_{0}^{2} /(8 \pi G)=1.88 \times 10^{-29} h^{2} \mathrm{~g} \mathrm{~cm}^{-3}=2.76 \times 10^{-7} h^{2} \mathrm{M}_{\odot} \mathrm{pc}^{-3}$. They further define $c=r_{200} / r_{s}$. Now

$$
V_{200}^{2}=\frac{G M_{200}}{r_{200}}=\frac{G}{c r_{s}} 200 \frac{4 \pi}{3} c^{3} r_{s}^{3} \frac{3 H_{0}^{2}}{8 \pi G}, \quad \text { or } \quad V_{200}=10 c r_{s} H_{0}
$$

and

$$
\frac{\rho_{s}}{\rho_{\text {crit }}}=\frac{200 c^{3}}{3[\ln (1+c)-c /(1+c)]} \equiv \frac{200}{3}[A(c)]^{2}
$$

For small values of c we have $[A(c)]^{2} \simeq 6 c /(3-2 c)$. (For those interested in trivia, $\rho_{s}=\rho_{\text {crit }}$ when $c \approx 3 / 402$.) The function $A(c)$ looks like:

$$
V(x)=V_{200}\left[\left(\frac{c}{x}\right) \frac{\ln (1+x)-x /(1+x)}{\ln (1+c)-c /(1+c)}\right]^{1 / 2}
$$

which has a maximum at $x \simeq 2.162582$ with the value

$$
V_{\max } \simeq 0.465 V_{200}\left[\frac{c}{\ln (1+c)-c /(1+c)}\right]^{1 / 2}=\frac{0.465 V_{200}}{c} A(c)=4.65 r_{s} H_{0} A(c)
$$

The average density inside r_{s} is

$$
\bar{\rho}_{1}=\frac{3 V^{2}(1)}{4 \pi G r_{s}^{2}}=\frac{3 V_{200}^{2}}{4 \pi G r_{s}^{2}} \frac{A^{2}(c)}{c^{2}}[\ln 2-1 / 2]=\frac{3 \times 0.193 A^{2}(c)}{4 \pi G} 100 H_{0}^{2}
$$

In terms of the critical density, this is

$$
\frac{\bar{\rho}_{1}}{\rho_{\text {crit }}}=\frac{3 \times 19.3 A^{2}(c)}{4 \pi G} H_{0}^{2} \times \frac{8 \pi G}{3 H_{0}^{2}}=38.6 A^{2}(c)
$$

which is less than ρ_{s} because $\rho\left(r_{s}\right)=\rho_{s} / 4-$ in fact, $0.58 \rho_{s} \approx \bar{\rho}_{1} \approx 2.32 \rho\left(r_{s}\right)$.

