more Galactic Structure

Read chapter 2 especially the section on the distance scale

Galactic Structure

- Stars
 - DISK THIN and older, less massive THICK disk

8 'Galaxies in the Universe' Sparke/Gallagher CUP 200

- BULGE and/or BAR
- Gas
 - atomic gas (HI)
 - in diffuse clouds, more extended than stars
 - molecular gas (H₂)
 - in dense clouds. Follows stars, spiral arms
 - hot, ionized gas (HII)
 - low mass, low density, large volume
- Dust
 - mostly in spiral arms & molecular clouds

The Exponential Disk

- Stars in the disk of the Milky Way and other spiral galaxies have an azimuthally averaged radial surface density profile that is reasonably well approximated as an
- EXPONENTIAL DISK

$$\Sigma(r) = \Sigma_0 e^{-r/R_d}$$

- \sum_{0} = Central Surface Density
- R_d = Radial Scale Length

also exponential in vertical direction; scale height depends on the population

In 3 dimensions

$$\rho(R, Z) = \rho_0 e^{-R/R_d} e^{-|z|/h_z}$$

$$egin{aligned} R_d & {
m Radial\ scale\ length} & R_d pprox 2\ {
m to\ } 3\ {
m kpc} \ h_z & {
m vertical\ scale\ height} & h_z pprox 300\ {
m pc} \end{aligned}$$
 for external galaxies, typically $\ R_d/h_z pprox 6\ {
m to\ } 10$

other models possible, e.g., $\operatorname{sech}(|z|/z_0)$

Integrating
3d
$$ho(R,Z) =
ho_0 e^{-R/R_d} e^{-|z|/h_z}$$

over z gives
 $\Sigma_0 = 2
ho_0 h_z$
Integrating
2d $\Sigma(r) = \Sigma_0 e^{-r/R_d}$ face-on
over R gives
total mass/luminosity $M = 2\pi \Sigma_0 R_d^2$

Star counts towards North Galactic Pole

How would this be different for b = 0?

Atomic HI gas

Galactic OB associations trace spiral arms, warp

crosses below plane; open symbols above

ESO 510-G13

Galactic Structure

- Stars
 - DISK THIN and older, less massive THICK disk
 - BULGE and/or BAR
 - stellar halo, globular clusters
- Gas
 - atomic gas (HI)
 - molecular gas (H₂)
 - hot, ionized gas (HII)
- Dust
- Supermassive Black Hole
 - Radio source Sgr A* marks center of Milky Way $M_{\bullet} \approx 3 \times 10^{6} M_{\odot}$ within ~ 100 AU

The beast in the center:

The Milky Way hosts a ~3 million solar mass black hole

Dust & Interstellar Extinction

- Interstellar Dust
- absorbs some light
 re-radiates in infrafred
- scatters some light
 - creates both dark nebulae
 - e.g., Bok Globules
 - and Reflection nebulae or

• Net effect: dims and reddens light from stars

Extinction at a particular wavelength denoted by A_{λ}

$$m_V^{corrected} = m_V^{observed} - A_V$$

Dust & Interstellar Extinction

Extinction is wavelength dependent:

The amount of dust is usually quantified by the "reddening" E(B-V):

$$E(B-V) = A_B - A_V$$

For some amount of reddening there is a corresponding amount of extinction:

$$A_V = R_V E(B - V)$$

 $R_V pprox 3.1$ in the Milky Way

Effect of different R values

The dust-to-gas ratio is approximately constant so that

$$N_{HI} \approx 1.8 \times 10^{21} \mathrm{~cm}^{-2} A_V$$

This has been used to map extinction within the Galaxy. NED will tell you how much Galactic dust there is along the line of sight to other galaxies.