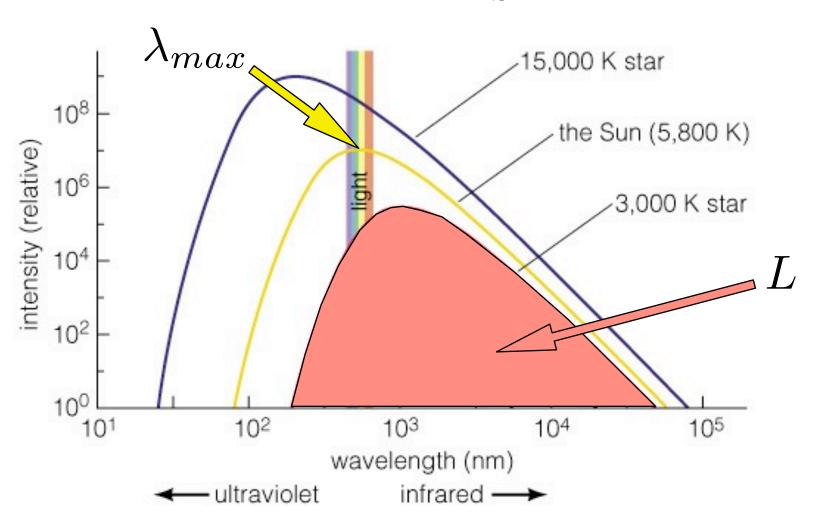
Stars

Their life & times

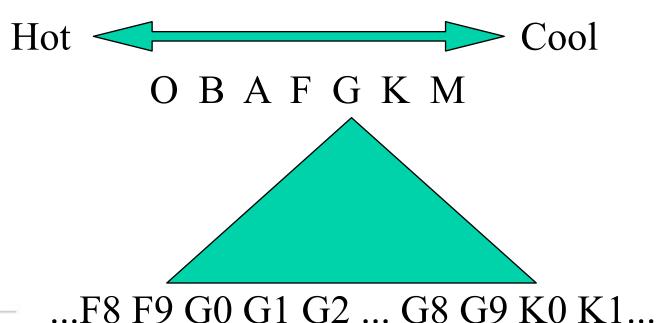
"Galaxies are made of stars"

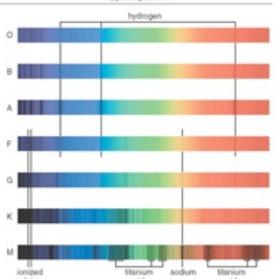
- R. Schommer (1989, private communication)


Thermal Radiation

1. Wien's Law:

$$\lambda_{max} = \frac{2.9}{T} \frac{\text{mm}}{\text{K}}$$


2. Stefan-Boltzmann:


$$L = 4\pi R^2 \sigma_{SB} T^4$$

- To a crude first approximation, stars are thermal radiators (blackbodies)
- In detail, their spectra depend on
 - surface temperature
 - surface gravity (gas pressure)
 - chemical composition

Spectral Types are a sequence in Temperature

The Sun is type G2

OBAFGKM

Example(s)	Temperature Range	Key Absorption Line Features	Brightest Wavelength (color)		Typical Spectrum
Stars of Orion's Belt	>30,000 K	Lines of ionized helium, weak hydrogen lines	€97 nm (ultraviolet)*	0	hydrogen
Rigel	30,000 K- 10,000 K	Lines of neutral helium, moderate hydrogen lines	97–290 nm (ultraviolet)*	В	В
Sirius	10,000 K- 7,500 K	Very strong hydrogen lines	290–390 nm (violet)*	А	A
Polaris	7,500 K- 6,000 K	Moderate hydrogen lines, moderate lines of ionized calcium	390–480 nm (blue)*	F	F
Sun, Alpha Centauri A	6,000 K- 5,000 K	Weak hydrogen lines, strong lines of ionized calcium	480–580 nm (yellow)	G G	G
Arcturus	5,000 K- 3,500 K	Lines of neutral and singly ionized metals, some molecules	580–830 nm (red)	к	K
Betelgeuse, Proxima Centauri	63,500 K	Molecular lines strong	7 830 nm (infrared)	M II ionized calcium	titanium sodium titanium oxide oxide

ove 6,000 K look more or less white to the human eye because they emit plenty of radiation at all visible wavelengths.

Pearson Education, Inc., publishing as Addison Wesley