Standard Dark Matter

 Picture:
Dark Matter Halo

Mostly non-baryonic dark matter, but some baryonic mass may be here as well

Luminous Galaxy

 stars, gas, dust, etc.Galaxies are embedded in extended, quasi-spherical halos of dark matter
$R_{v i r} \gg R_{*}$
The virial radius of the dark matter halo is much larger than the luminous galaxy

In MOND, what you see is what you get.
Galáxies come in two basic flavors:
Early Types (Ellipticals; pressure supported spheroids) and Late Types (Spirals and Irregulars; rotating disks)

$$
\text { NGC } 3379
$$

* Early Type

NGC 891 (Elliptical)

UGC 2885

Sizes and masses of galaxies

Measuring the properties of a galaxy

The surface brightness profile is obtained by fitting ellipses to galaxy images, as in this example from Schombert (2007) using ARCHANGEL.

Each ellipse corresponds to an isophote - a ring of constant surface brightness.

Surface brightness is conventionally expressed in magnitudes per square arcsecond, with a corresponding physical unit of solar luminosities per square parsec.

Fig. 2.- The resulting ellipse fits to NGC 3193's core region. While the automatic masking of the contaminating star is not perfect, it is sufficient to maintain a high quality fit.

Late Type Galaxies are typically approximated as Exponential disks

Azimuthally averaged light distribution approximately exponential for spiral disks.

Early Type Galaxies typically have approximately de Vaucouleurs $r^{1 / 4}$ profiles

Galaxies are made of gas as well as stars
 \qquad

near infrared atomic gas
NGC 6946 stars \& gas
ngc

-

5

1

-

\qquad
\qquad

Analytic approximations are useful for defining metrics for size. Here, a nonparametric radius that contains half the light is used. The stellar mass is estimated from the integrated light and some estimate of the stellar mass-to-light ratio.

Gas and Stars in Galaxies

Beware selection effects! Catalogs are always dominated by brightest objects

The apparent numbers of galaxies in magnitudelimited samples decreases with decreasing mass, while their intrinsic numbers increase.

Moffett et al. 2016, MNRAS, 457, 1308

Baryonic Mass Components of Galaxies

$$
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+\frac{1}{X}\left(M_{H I}+M_{H_{2}}\right)
$$

$$
X \approx 0.73 \text { (hydrogen fraction) }
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- Υ_{*}^{i} is the stellar mass-to-light ratio in photometric band i
- Cold Gas
- Atomic gas - H I
- $M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}$ negligible within the optical radius
- Molecular gas - H_{2}
- $M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O} \quad$ using carbon monoxide as a proxy also scales with stellar mass
at least for late type gaxies $M_{H_{2}} \approx 0.07 M_{*}$ at least for late type galaxies

The atomic gas of the ISM is often more extended than the stars
NGC 2403
stars

Fraternali, F., Oosterloo, T., Sancisi, R., van Moorsel, G.A. 2001, ApJ, 562, L47

Molecular ISM

Cold (~30 K),"dense" (> 100 molecules/cc) phase of the ISM

Very clumpy, with low filling factor - much of the H_{2} mass is in Giant Molecular Clouds ($\sim 10^{6} \mathrm{M}_{\circ}$). This is where stars form. The distribution of molecular gas typically follows that of the stars.

Often CO observations are not available, in which case one approach is to use scaling relations: the amount of molecular gas is proportional to the star formation rate and the stellar mass.

Typically we measure the mass of hydrogen gas (e.g., M_{HI}). This needs to be corrected to account for the presence of helium and metals.
$\mathrm{X}=$ hydrogen fraction (primordial fraction $3 / 4$) $\mathrm{Y}=$ helium fraction (primordial fraction $1 / 4$) $Z=$ everything else

$$
X=0.75-38.2\left(\frac{M_{*}}{M_{0}}\right)^{\alpha}
$$

with $\alpha=0.22$ and $M_{0}=1.5 \times 10^{24} \mathrm{M}_{\odot}$

For a low mass dwarf galaxy, $X^{-1}=1.34$, while for a Milky Way mass galaxy, $X^{-1}=1.41$.

Baryonic Mass Components of Galaxies

$$
M_{b}=M_{*}+M_{g}=\Upsilon_{*} L+\frac{1}{X}\left(M_{H I}+M_{H_{2}}\right)
$$

$$
X \approx 0.73 \text { (hydrogen fraction) }
$$

- Stars $\quad M_{*}=\Upsilon_{*}^{i} L_{i} \quad L_{i}=4 \pi D^{2} F_{i}$
- Υ_{*}^{i} is the stellar mass-to-light ratio in photometric band i
- Cold Gas
- Atomic gas - H I
- $M_{H I}=2.36 \times 10^{5} D^{2} F_{H I}$ negligible within the optical radius
- Molecular gas - H_{2}
- $M_{H_{2}}=1.1 \times 10^{4} D^{2} F_{C O} \quad$ using carbon monoxide as a proxy also scales with stellar mass
at least for late type gaxies $M_{H_{2}} \approx 0.07 M_{*}$ at least for late type galaxies

