Baryonic Mass Components of Galaxies

$$M_b = M_* + M_g = \Upsilon_* L + \frac{1}{X} \left(M_{HI} + M_{H_2} \right)$$

 $X \approx 0.73$ (hydrogen fraction)

• Stars
$$M_* = \Upsilon^i_* L_i$$
 $L_i = 4\pi D^2 F_i$

• Υ^{i}_{*} is the stellar mass-to-light ratio in photometric band i

• Cold Gas

- Atomic gas H I
 - $M_{HI} = 2.36 \times 10^5 D^2 F_{HI}$
- Molecular gas H_2
 - $M_{H_2} = 1.1 \times 10^4 D^2 F_{CO}$

also scales with stellar mass at least for late type galaxies dust and hot ionized gas are typically negligible within the optical radius

counting hydrogen atoms

using carbon monoxide as a proxy

 $M_{H_2} \approx 0.07 M_*$

Stellar mass-to-light ratios from stellar population models

galaxies color coded by Hubble type

Schombert et al (2019, 2021)

Stellar population models

Typically, redder colors mean higher mass-to-light ratios

Baryonic Mass of Galaxies

$$M_b = M_* + M_g = \Upsilon_* L + X^{-1} \left(M_{HI} + M_{H_2} \right)$$

 $X^{-1} \approx 1.33 - 1.42$ hydrogen fraction

• Stars
$$M_* = \Upsilon_*^i L_i$$
 $L_i = 4\pi D^2 F_i$
• Υ_*^i is the stellar mass-to-light ratio in photometric band i

To a surprisingly good approximation ($\sim 20\%$), for star forming (late type) galaxies

$$M_* \approx 0.5 L_{[3.6]} \approx 0.63 L_K$$

For early type galaxies and the bulge component of spirals

$$M_* \approx 0.9 L_{[3.6]} \approx 1.1 L_K$$

That gets us the total mass. We also need to know its distribution.

For analytic approximation to the mass profile like exponential disk $\Sigma(R) = \Sigma_0 e^{-R/R_d}$ There can be a formula for the corresponding rotation curve $M_*(R) = 2\pi \int_0^R \Sigma(R')R'dR'$ $V_*^2(R) = \frac{2GM_*}{R_d} \left(\frac{R}{2R_d}\right)^2 \left[I_0\left(\frac{R}{2R_d}\right)K_0\left(\frac{R}{2R_d}\right) - I_1\left(\frac{R}{2R_d}\right)K_1\left(\frac{R}{2R_d}\right)\right] \qquad M_* = 2\pi R_d^2 \Sigma_0$ Progressive approximations in mass modeling

- Point Mass
- "spherical" disk
- thin exponential disk
- thick exponential disk
- surface density $\Sigma(R)$
- 2D $\Sigma(R,\phi)$ [e.g., bars]
- 3D $\rho(R,\phi,z)$
- 3D + non-equilibrium

We numerically solve the Poisson equation to obtain the gravitational potential Φ_* from the observed surface density $\Sigma_*(R)$

I and K are modified Bessel functions

 $7R_d$

Example: model Milky Way

Surface density profile $\Sigma_b(R)$

Numerically solve the Poisson equation

$$\nabla^2 \Phi_* = 4\pi G \rho_*(R, \theta, Z)$$
$$g_*(R) = \frac{V_*^2}{R} = -\frac{\partial \Phi_*}{\partial R} = 2\pi G \Sigma_*(R)$$

for each observed component. Velocities add in quadrature:

 $V_b^2(R) = V_*^2(R) + V_g^2(R)$

Rotation curve $V_b(R)$

Stellar orbits in galaxies

NGC 628 M105 **Elliptical Galaxy** Spiral Galaxy **Pressure Supported Rotationally Supported**

Eccentric radial orbits Random orientations Nearly circular orbits Same direction, same plane

M33 velocity field

kinematic major axis

Rotation curves extracted using "tilted ring" fits

Fit ellipses that most closely match the circular velocity at a given radius. In principle, get ellipse center, position angle, axis ratio, inclination, and rotation velocity. In practice, usually have to fix some of these parameters.

tilted ring model

velocity variation along ring

NGC 6822 (Weldrake & de Blok 2003)

$V\sin i = V_{sys} + V_c \cos\theta + V_r \sin\theta$

redeni

Jioole expansion

Jelocity

21cm interferometric observations give atomic gas distributions and velocity fields

Figure 5.6: - The (0.86, 88°) simulation results (red) over-plotted with the observed UGC 4325 data (blue). The simulation and data match well between $\sim 12'' - 30''$.

Example analysis for one galaxy. Left: position–velocity diagrams along the major (top) and minor (bottom) axis. Center: 2D Hi map (top), velocity field (middle), and velocity dispersion (bottom). The left panels show the data, the center panels the fitted model, and the right panels the residuals. Right: derived radial quantities: the rotation curve (top left, with Vf noted in grey), the Hi surface density (top right), followed by the velocity dispersion, system redshift, inclination, position angle, and x and y centroids.