
AST222 Winter 2006 Supplementary Notes: Galaxy Surface Brightness Profiles

The fundamental way we characterize the morphology of galaxies is through their surface brightness
profiles. The light from galaxies follows a distribution of brightness on the night sky given by I(x, y)
where I is the intensity or surface brightness distribution measured in units of luminosity per unit
area at position (x, y) where the area is either in physical units (pc2) or an angular area in square
arcseconds. The intensity is often represented by a radially-averaged function, I(R). The total
luminosity of a galaxy is then just:

Ltot = 2π
∫

∞

0

I(R)RdR (1)

Astronomers usually quote surface brightness in units of magnitudes per square arcsec denoted by
the symbol µ. The quantity µ represents the apparent magnitude of the equivalent total light
observed in a square arcsecond at different points in the distribution. It can be related to the
physical surface brightness profile through:

µ = −2.5 log
10

I + C (2)

If I is measured in L¯ pc−2 then the constant C can be found by going back to the distance modulus
formula and determining the amount of light in a square arcsec for a galaxy observed at distance d
(in pc) i.e. the light in a sq. arcsec is:

L = Id2δθ2 (3)

where δθ = 1” = 1/206265 radians. The distance modulus formula is:

m = M + 5 log
10

d/(1pc) − 5 (4)

where M is the absolute magnitude of the star given in terms of the solar absolute magnitude M¯

by:

M = −2.5 log
10

L/L¯ + M¯ (5)

(M¯ is the absolute magnitude of the sun not to be confused with the solar mass). If we plug in L
for the patch of light in 1 sq. arcsec into the formula above and recognize that µ ≡ m the apparent
magnitude of the square arcsecond patch in this context we determine:

µ = −2.5 log
10

(Id2δθ2) + 5 log
10

d − 5 + M¯

µ = −2.5 log
10

I − 5 log
10

(δθ) − 5 + M¯

µ = −2.5 log
10

I/(L¯pc−2) + M¯ + 21.572
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Notice that the distance d cancels so that the quantity µ is independent of distance and I is measured
in units of L¯ pc−2. The constant just comes from the size of an arcsecond in radians. (Note
when the distance of galaxies becomes large - cosmological effects and the curved geometry of the
universe become important and change the relationship between distance and surface brightness
but the above formula is valid for nearby galaxies within a 100 Mpc or so).

As an example, the K-band central surface brightness of the galaxy is estimated to be I0 = 1208
L¯ pc−2 with MK = 3.28 for the sun, so what would be the measured surface brightness for an
external observer? Using the formula above,

µK = −2.5 log
10

(1208) + 3.28 + 21.572 = 17.15 mag. per sq. arcsec (6)

Radial Surface Brightness Profiles for Galaxies

Spiral galaxies are usually observed to have exponential radial profiles after correction for inclination
given by:

I(R) = Io exp(−R/Rd) (7)

The total luminosity is given by L =
∫

∞

0
I(R)RdR. Solving the integral gives Ltot = 2πR2

dIo. We
can also express this as:

µ = µ0 +
2.5

ln 10

(

R

Rd

)

= µ0 + 1.09
(

R

Rd

)

(8)

Elliptical galaxies tend to follow the R1/4 or deVaucouleurs (1948) law:

I(R) = Io exp(−[R/R0]
1/4) (9)

where Io is the central surface brightness and Ro is a scale-length. This profile is a bit of a pain
to deal with mathematically but using the substitution u = (R/R0)

1/4 or R = R0u
4 the total

luminosity is given by:

Ltot = 8πI0R
2

0

∫

∞

0

u7 exp(−u)du (10)

We can solve this integral using the identity:

∫ u0

0

un exp(−u)du = n![1 − exp(−u)(1 + u + u2/2! + . . . + un/n!)] (11)

so that Ltot = 8π7!I0R
2

0
.

The R1/4 law is usually characterized by the effective radius Re i.e. the radius that contains exactly
half the total light. To compute this radius, we need to solve the equation:
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2π
∫ Re

0

I(R)RdR =
Ltot

2
(12)

The solution gives the result (Re/Ro)
1/4 = 7.669. We also characterize the profile in terms of Ie,

the surface brightness measured at the effective radius. With these changes the usual form seen in
the astronomical literature is:

I(R) = Ie exp
{

−7.669[(R/Re)
1/4 − 1]

}

(13)

or

µ = µe − 2.5(−7.669)/ ln 10
[

(R/Re)
1/4 − 1

]

(14)

µ = µe + 8.3268
[

(R/Re)
1/4 − 1

]

(15)

Relationship between 2D and 3D profiles

For spherical galaxies, the measured surface brightness represents the projection of the 3D radial
profile of the stars. The luminosity density in 3D is usually given by the function, j(r). We can
determine the observed intensity by integrating along the line of sight viz.

I(R) = 2
∫

∞

0

dz j(r) (16)

Since r2 = R2 + z2 where r is the spherical radius and R is the cylindrical radius then:

I(R) = 2
∫

∞

R

j(r)rdr
√

r2 − R2
(17)

This can actually be inverted using an Abel integral identity through:

j(r) = −
1

π

∫

∞

r

dI

dR

dR
√

R2 − r2
(18)

This means in principle if we observe the 2D profile, we can determine the 3D profile and then have
a handle of the gravitational field of the stars with some assumption of the mass to light ratio M/L
i.e. the 3D density is just ρ(r) = (M/L)j(r). The deprojection of the deVaucouleurs law has been
done but there is no simple analytical expression for j(r). Hernquist (1990) noted that the density
profile ρ(r) = Ma/[2πr(r + a)3] generated by the potential Φ(r) = −GM/(r + a) looks very much
like a deVaucoleurs profile when projected to determine I(R). The effective radius Re = 1.82a.

Mass Modeling of Spiral Galaxies: Bulge-disk decomposition

The radial surface brightness profile of spiral galaxies appears to be a superposition of a bulge and
disk component so total profiles are usually fit with the profile:
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Figure 1: A mass model of the galaxy M31 with rotation curve (including dark matter) plus surface
brightness (from Widrow and Dubinski 2005).

I(R) = Id(R) + Ib(R) (19)

where Id(R) is usually modelled as an exponential disk and Ib(R) is modelled as a deVaucouleurs
law. Each model function has 2 parameters so the net fit has a total of 4 parameters. The general
procedure is to take an image of galaxy in some bandpass like the B or K band and then fit isophotal
contours to the time image to measure I(R). A nonlinear least squares fit is then applied to the
data to determine the parameters I0 and Rd for the disk and Ie and Re for the bulge. In this way,
we have separated out these 2 components and can consider them independently. We can then
assume a mass to light ratio for both components and thus determine a physical surface density
Σ(R) and 3D density for the bulge, ρ(r). Both of these physical mass densities can be converted into
gravitational potentials by solving Poisson’s equations and thus find the expected rotation curves.
The solution for the disk is complex but solvable while a spherical bulge profile is simpler to deal
with.
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