Today

- Moons of the solar system

Events

- Homework 5
- Due next time

Round objects in the solar system with diameter $<10,000 \mathrm{~km}$

Selected Moons of the Solar System, with Earth for Scale

Obvious Definition

- A moon is an object that orbits a planet

Sizes of Moons

- Small moons (<300 km)
- No geological activity
- Medium-sized moons (300-1,500 km)
- Geological activity in past
- Large moons (> 1,500 km)
- Ongoing geological activity

Other objects for comparison

Moons of the

 Gas Giants
(Medium and Large)

- Enough self-gravity to be spherical
- Have substantial amounts of ice - as important as rock to overall composition
- Circular orbits mostly prograde (in the same direction as planet rotates)
- Formed in orbit around jovian planets

Rocks and metals condense,
hydrogen compounds stay vaporized.
Hydrogen compounds, rocks, . and metals condense.

Inside frost line: terrestrial planets
Beyond frost line: Gas giants, icy moons, dwarf planets, comets

Jupiter

lo

Europa

Ganymede

Saturn

Uranus

Miranda

Ariel

Triton

Other objects for comparison

Mercury

Moon

Neptune

Nereid

Umbriel Titania Oberon

Neptune

Medium and

Large Moons

- Density
- low
- typically $\sim 2 \mathrm{~g} / \mathrm{cc}$
- more than Gas giants
- less than Terrestrials
- Composition
- rock
- ice / subsurface water

Ice is just another common "rock" mineral in the outer solar system.

Small Moons

- Far more numerous than the medium and large moons
- Not enough gravity to be spherical:
"potato-shaped"
- Often just captured asteroids

The moons of Jupiter

Galilean moons of Jupiter ("Medici stars")

Io

- Io is the most volcanically active body in the solar system.

Volcanic activity discovered on lo during the Voyager fly-by

What're the odds?
volcanic plume

lo's Volcanoes

- Volcanic eruptions continue to change lo's surface.

optical

infrared

dark volcanic craters in the optical correspond to hot spots in the infrared show interactive optical/IR image

lo's surface

 very youngConstantly re-covered in fresh lava \& sulfur dioxide snow

Tidal Heating

small tidal bulges

Io is squished and stretched as it orbits Jupiter.

Orbit is elliptical because of orbital resonances with other moons

Orbital Resonances

Every 7 days, these three moons line up.
show interactive figure

- Volcanic eruptions continue to change Io's surface.

Europa

Euronatsinterior also warnera oy tiodineating

Europa may have a 100 -km-thick ocean under anicy crust.

Rising plumes of warm water may sometimes create lakes within the ice, causing the crust above to crack.

explaining Surfacs terrain that looks like a jumble of icebengs suspended in a place where liquid or slusty water froze.

Tidal stresses crack Europa's surface ice.

Europa's surface appears heavily cracked even from a distance.

Close-up photos show doubleridged cracks, best explained by an icy crust moving upon a soft or liguid layer below.

Tidal stresses cause parts of Europa's icy crust to slowy slide past each other.

Frictional heating expands -rice here, forming the ridge..
.. and may melt ice here,
collapsing the ridge center.

cold brittle surface ice

Europa

Icy surface

- cracks driven by tidally driven "geological" activity
Liquid ocean beneath?
- popular spot to speculate about the potential for life

2001 Space Odyssey

 written when 2001 was far in the future

There are serious proposals to send a robotic submersible to Europa.

2001 warned against that because this thing will eat you.

Ganymede

- Largest moon in the solar system
- Clear evidence of geological activity
- Salty ocean under thick crust of ice
- Tidal heating plus heat from radioactive decay?

Ganymede Interior

Ice crust ($\sim 150 \mathrm{~km}$ thick)
Saline ocean ($\sim 100 \mathrm{~km}$ thick) Ice mantle

Rocky mantle

The moons of the Jovian planets

2006 Pearson Education, Inc., publishing as Addison Wesley

Callisto

- "Classic" cratered iceball
- No tidal heating, no orbital resonances

Saturn

- Has one large moon - Titan
- a large number of medium-sized and small moons
- Rings composed of many tiny icy moonlets

Saturn's large moon Titan

- Titan is the only moon in the solar system which has a thick atmosphere.
- It has a thick haze layer that obscures the surface at optical wavelengths.

Saturn's large moon Titan

- Atmospheric composition:
$-90 \% \mathrm{~N}_{2}$
- 5\% Argon
$-5 \% \mathrm{CH}_{4}$ (methane)
- other hydrocarbons
- Hazy

Saturn's large moon Titan

- Relative to Earth:
- 1.5 Atm pressure
- 4x denser
- comparable total mass (1.2x)
- more extended
- due to lower gravity
- Cold

$$
--180^{\circ} \mathrm{C}
$$

Titan is

- Big for a moon, and
- cold - can retain an atmosphere

atmospheric haze in optical light

Underneath the
 atmosphere is terrain, including seas
 of liquid hydrocarbons

solid surface

liquid methane

Some transparent windows in the infrared. Reveals widespread lakes of liquid methane. Weather on Titan involves methane clouds and rain.

Titan’s Surface

- The Huygens probe provided a first look at Titan's surface in early 2005.
- It had liquid methane, "rocks" made of ice.

Huygens descent movie
https://www.youtube.com/watch?v=HtYDPj6eFLc https://www.youtube.com/watch?v=bS9wlVsFlzA

Medium Moons of Saturn

- Almost all of them show evidence of past volcanism and/or tectonics.

Medium Moons of Saturn

- Mimas has a big crater that makes it look like the Death Star.

Medium Moons of Saturn

- Ice fountains of

Enceladus suggest it may have a subsurface ocean.

Medium Moons of Saturn

Dione (1118 km)

Rhea (1528 km)

lapetus
(1436 km)

- lapetus is dark on one side \& bright on the other. It seems to have collected a goo of space debris emitted by Phoebe on the leading (dark) side of its orbit.

Medium Moons of Saturn

- lapetus has a
curious ridge around much of its equator

Small moons can also be weird. Hyperion looks like a sponge.

Uranus medium sized moons

Miranda
Ariel
Umbriel

Titania
Oberon

Neptune one big moon

Other objects for comparison

Mercury

Moon

Pluto

Moons of Uranus

Miranda

Ariel

Medium Moons of Uranus

- They have varying amounts of geological activity.
- Miranda has large tectonic features and few craters (possibly indicating an episode of tidal heating in past).

Moons of Neptune

Triton

 y morn
Neptune’s Moon Triton • Similar to Pluto, but

 larger

This close-up shows lava-filled impact basins similar to the lunar maria, but the lava was water or slush rather than molten rock.

The occasional geyser, heated by sunlight, streaks the downwind terrain with dark material

- Evidence for past geological activity
- orbits retrograde
- unique for such a large moon
- may have been a binary partner of Pluto captured by Neptune

geysers

Why are small icy moons more geologically active than small rocky planets?

Rocky Planets versus Icy Moons

- Rock melts at higher temperatures.
- Only large rocky planets have enough heat for activity.
- Ice melts at lower temperatures.
- Tidal heating can melt internal ice, driving activity.

