Extrasolar Planets

Homework due next time (last class) - will count best 5 of 6

Final exam Dec. 20 @ 12:00 noon - here

Planet Detection

• Direct: pictures or spectra of the planets themselves

- Indirect: measurements of stellar properties revealing the effects of orbiting planets
 - Astrometric method (face-on)
 - Doppler method (edge-on)
 - Transit method (edge-on)
 - Gravitational lensing

Doppler Technique

a A periodic Doppler shift in the spectrum of the star 51 Pegasi shows the presence of a large planet with an orbital period of about 4 days. Dots are actual data points; bars through dots represent measurement uncertainty.

Best seen edge-on

Transit Technique

- A transit is when a planet crosses in front of a star.
- The resulting eclipse reduces the star's apparent brightness and tells us planet's radius.
 - best seen edge-on

Gravitational lensing Technique Gravitation Microlensing

Extrasolar planet detected by gravitational microlensing

All methods have strong selection effects

...and are good at measuring different things Kepler is excellent at measuring radius; not necessarily mass.

What properties of extrasolar planets can we measure?

Orbital Properties of Extrasolar Planets

© 2014 Pearson Education, Inc.

Measurable Properties

- Orbital period, distance, and shape (eccentricity)
- Planet mass, size, and density
- Atmospheric properties (sometimes)

Exoplanet app gives you scientific data for thousands of exoplanets

What can Doppler shifts tell us?

 Doppler shift data tell us about a planet's mass and the shape of its orbit.

© 2014 Pearson Education, Inc.

Planet Mass and Orbit Tilt

b We can detect a Doppler shift only if some part of the orbital velocity is directed toward or away from us. The more an orbit is tilted toward edge-on, the greater the shift we observe.

- We cannot measure an exact mass for a planet without knowing the tilt of its orbit, because Doppler shift tells us only the velocity toward or away from us.
- Doppler data give us lower limits on masses, M*sin(i)

The Relative Sizes of Known Exoplanets and Solar System Planets Alex H. Parker / @Alex_Parker Data from http://exoplanet.eu/

Astronomy Picture of the Day

over the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by

Kepler Orrery IV

The Kepler 11 system

- The periods and sizes of Kepler 11's 6 known planets can be determined using transit data.
- These periods are short
 - Iongest Kepler g at 118 days

The Kepler 11 system

- Note sizes all planets in this system a few times the size of the Earth!
- Uranus is 4 R_E;
- Neptune 3.8 R_E

Calculating density

Using mass, \bullet determined using the Doppler technique, and size, determined using the transit technique, density can be calculated.

© 2014 Pearson Education, Inc.

The Kepler 11 system

- The densities of all these planets are low
 0.6 1.7 g/cc (Typical of Jovian planets)
- What does this imply about the solar nebula hypothesis?

The Kepler 11 system

- The densities of all these planets are low
 0.6 1.7 g/cc
- Star is
 - 0.96 mass of sun
 - 1.07 radius of sun
 - 8.5 Gyr old (sun is 4.5 Gyr)
- Tightly packed system that is nevertheless stable

Exoplanet properties in general: size vs. mass

Radius

RELAX ON KEPLER-16b

THE LAND OF TWO SUNS

WHERE YOUR SHADOW ALWAYS HAS COMPANY

Like Luke Skywalker's planet "Tatooine" in Star Wars, Kepler-16b orbits a pair of stars. Depicted here as a terrestrial planet, Kepler-16b might also be a gas giant like Saturn. Prospects for life on this unusual world aren't good, as it has a temperature similar to that of dry ice. But the discovery indicates that the movie's iconic double-sunser is anything but science fiction.

EXPERIENCE THE GRAVITY OF A SUPER A SUPER EARTH

Twice as big in volume as the Earth, HD 40307g straddles the line between "Super-Earth" and "mini-Neptune" and scientists aren't sure if it has a rocky surface or one that's buried beneath thick layers of gas and ice. One thing is certain, though: at eight times the Earth's mass, its gravitational pull is much, much stronger.

Might exoplanets be home to life?

Habitable Zone

TOO HOT

JUST RIGHT

TOO COLD

Planet size: 1-2x Earth

Habitable Zone

for terrestrial life

- Depends on
 - Brightness of star
 - also the spectrum of star too much UV? too little?
 - Distance of planet from star
 - Nature of planet
 - surface gravity
 - atmosphere
 - greenhouse gases
 - water
 - other... some argue the moon is a necessary shield against too many major impacts

THE HABITABLE ZONE AROUND A STAR IS ESSENTIALLY THE REGION IN WHICH LIQUID WATER CAN BE PRESENT ON A PLANET'S SURFACE. WITHIN THIS ZONE, LIFE CAN GROW

MARS

EARTH

VENUS

Presumably, the habitable zone is farther out form hot, bright stars and closer in to faint, cool ones.

Stars evolve over billions of years, gradually becoming brighter - planets may slip out of the habitable zone as a result

For the Earth, expect

- The sun increases slowly in brightness
- in 600 million years, the Carbon cycle may have progressed to the point that the atmosphere may lack sufficient CO₂ to sustain plant life
- In ~ 1 billion years, solar luminosity will have increased ~10%, evaporating the oceans ("wet greenhouse")
- In ~6 billion years, the sun will expand into a red giant, potentially swelling far enough to encompass the orbit of the Earth

Future Earth?

