Today

- more gravity \& orbits
- Tides

Events

- Homework Due Next time; Exam reiview (Sept. 27)
- Exam I on Sept. 29 (one week)

NotABLE

- Fall equinox (Sept. 22 - today, at 10:2 IAM)
- Rosetta mission end Sept. 30

Comet 67P

http://www.esa.int/spaceinimages/lmages/20|5/0|/ Philae descends to the comet

A thruster, harpoon, \& screws planned to hold Philae down

Foot screw starts drilling

 upon impact with the surface

Philae found 2 September 2016 as the orbiter came within 2.7 km of the surface

Rosetta will end its mission with a controlled impact in the Ma'at region, on the small lobe of Comet 67P

Kepler's Third Law

$$
P^{2}=a^{3}
$$

Newton's version of Kepler's Third Law

$$
P^{2}=\frac{4 \pi^{2}}{G} \frac{a^{3}}{M}
$$

$p=$ orbital period
$a=$ average orbital distance (between centers)
$\mathrm{M}=\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)=$ sum of object masses
(basically the mass of the sun)

Orbits of the Moons of Jupiter

Moon	P (days)	$\mathrm{a}(\mathrm{km})$	$\mathrm{a}^{3} / \mathrm{P}^{2}$ (solar masses)
Io	1.8	4×10^{5}	0.001
Europa	3.6	7×10^{5}	0.001
Ganymede	7.2	1×10^{6}	0.001
Callisto	16.7	2×10^{6}	0.001

How do gravity and energy together

 allow us to understand orbits?More gravitational energy;
Less kinetic energy

Less gravitational energy;
More kinetic energy

- Total orbital energy (gravitational + kinetic) stays constant if there is no external force.
- Orbits cannot change spontaneously.

Total orbital energy stays constant.

Changing an Orbit

\Rightarrow So what can make an object gain or lose orbital energy?

- Friction or atmospheric drag
- A gravitational encounter
- The thrust of a rocket
i.e., some external force

movie: Messenger orbit

Escape Velocity

- If an object gains enough orbital energy, it may escape (change from a bound to unbound orbit).
- Escape velocity from Earth \approx $11 \mathrm{~km} / \mathrm{s}$ from sea level (about $40,000 \mathrm{~km} / \mathrm{hr}$).

PLAY 04_02 canon ball 04_EscapeVEarth

Circular \& Escape velocity

Circular velocity: $\quad v_{c i r c}=\sqrt{\frac{G M}{r}}$

Escape velocity: $\quad v_{e s c}=\sqrt{\frac{2 G M}{r}}=\sqrt{2} v_{\text {circ }}$

Examples:

Object	circular speed at surface	escape speed from surface
Earth	$7.8 \mathrm{~km} / \mathrm{s}$	$11 \mathrm{~km} / \mathrm{s}$
Sun	$436 \mathrm{~km} / \mathrm{s}$	$617 \mathrm{~km} / \mathrm{s}$
Moon	$1.7 \mathrm{~km} / \mathrm{s}$	$2.4 \mathrm{~km} / \mathrm{s}$

What have we learned?

- What determines the strength of gravity?
- Directly proportional to the product of the masses ($\mathrm{M} \times \mathrm{m}$)
- Inversely proportional to the square of the separation
- How does Newton's law of gravity allow us to extend Kepler's laws?
- Applies to other objects, not just planets
- Includes unbound orbit shapes: parabola, hyperbola as well as bound ellipse
- Can be used to measure mass of orbiting systems

Why are stars and planets spherical?

- Gravity pulls - it is an attractive force
- IF self-gravity is the most important force holding an object together, it must be spherical.

Example: Earth

- Diameter of Earth: $12,756 \mathrm{~km}$
- Mt. Everest: 8.848 km above sea level
- Mariana Trench: 10.934 km below
- Maximum variation: 19.782 km

$$
\begin{aligned}
\frac{\text { maximum variation }}{\text { diameter }} & =\frac{19.782}{12,756} \\
& =0.0015
\end{aligned}
$$

- a very smooth sphere!
- Gravity makes individual objects round
- about 100 km in diameter is where objects start to become dominated by self-gravity
- planets round
- asteroids still lumpy

This holds for individual objects. What about multiple objects?

Tides

Not to scale!
Tides are the result of differential gravity

- The Moon's gravity pulls harder on near side of Earth than on far side (inverse square law).
- The difference in the Moon's gravitational pull stretches Earth.

Not to scale!
Tides are the result of differential gravity

- The Moon's gravity pulls harder on near side of Earth than on far side (inverse square law).
- The difference in the Moon's gravitational pull stretches Earth.

$$
F=\frac{G M_{E} M_{m}}{(D+R)^{2}} \quad F=\frac{G M_{E} M_{m}}{(D-R)^{2}}
$$

So the gravitational attraction towards the moon is about 7\% stronger on the near side of the Earth than on the far side.

2 Tides a day

spring tides

The combined force of the sun and moon causes the ideal gravitational surface to be slightly non-spherical.

Consequently, Earth's oceans to fill a slightly oblate spheroid.

The Earth spins under this spheroid, so we have two pairs of low \& high tides a day.

Tides and Phases

spring tides

Size of tides depends on the phase of the Moon.
to Sun

Spring tides are stronger than neap tides because the sun and moon team up at new \& full moon.

first-

- quarter

PLAY 04_03 Tides

Tidal Friction

- The spin of the Earth drags the tidal bulge of the ocean ahead of the ideal oblate spheroid, which is aligned with the moon.
- The gravity of the moon pulls back on the leading, near side bulge more strongly than it pulls forward the far side bulge.
- The net result is tidal friction, which results in a gradual braking of the spin of the Earth.

Tidal Friction

- Tidal friction gradually slows Earth rotation
- Moon gradually drifts farther from Earth (3.8 centimeters per year)
- conservation of angular momentum

The length of Earth's day increases 2 milliseconds per century

- Moon once spun faster; tidal friction caused it to "lock" in synchronous rotation
- orbit period:spin period $=1: 1$

Summary of Tides

- Gravitationally bound objects are spherical - e.g., planets, stars
- Tides are caused by the differential gravity of the sun and moon
- Spring tides are cause when the sun and moon are aligned; neap tides when they are perpendicular.
- Tidal friction gradually changes
- the orbit of the moon and the spin of the earth

