Today

- Moons of the solar system
- Rings

Events

- Homework 5
- Due

The moons of the Jupiter

Io

Infrared view of lo

The glowing spots are active volcanoes

lo's surface is young

Constantly re-
covered in fresh lava \& sulfur dioxide snow

Orbital Resonances

Every 7 days, these three moons line up.

The moons of the Jovian planets

Europa

Europa

Europa's interior also warmed by tidal heating.

Europa mazy have a 100-km-thick ocaan under an icy const.

- metallic core
- rocky mantle
- briny global ocean
- ice crust

Ice crust stressed and sometimes melted from below...

- oxplaining sufface termain that Koks like a jumbis of inebergs suspanded' in a place whore niguid or siusivy water froze.
... resulting in a jumbled terrain of broken ice sheets

Energy source: tidal heating again important, just not as strong as on lo

Tidal stresses crack Europa's surface ice.

Europa's surface appears heavily cracked even from a distance.

Close-vo photus show dowble-ridged cracks, best expiained oy an icy crust moving upon a soft or fiquid layer below.

Tidà stresses cause parts of Europa's icy crust
to slowly side past cach othor.

- metallic core
- rocky mantle
- briny global ocean
- ice crust

Sometimes long tidal cracks and ridges form, a bit like fault lines on the Earth

Energy source: tidal heating again important, just not as strong as on lo

cold brittle surface ice

Europa

Icy surface

- cracks driven by tidal heating
("geological" activity)
Liquid ocean beneath
- popular spot to speculate about the potential for life

$2001:$ A Space Odyssey made in 1968

ALL THESE WORLDS ARE YOURS EXCEPT EUPOPA ATTEMPT NO LANDING THERE

There are serious proposals to send a robotic submersible to Europa.

200 I warned against that because this thing will eat you. o

The moons of the Jupiter

Ganymede

Ganymede

- Largest moon in the solar system
- Clear evidence of geological activity
- Salty ocean under thick crust of ice
- Tidal heating still important, but much less than on Io or Europa

Ganymede Interior

Ice crust (~150 km thick)
Saline ocean ($\sim 100 \mathrm{~km}$ thick) Ice mantle

Rocky mantle

Iron core

Temperature
Temperature

The moons of the Jupiter

Callisto

Callisto

- "Classic" cratered iceball

- very thick ice crust

- No orbital resonances
- No tidal heating

Saturn's moons

- Saturn has one large moon Titan
a large number of medium-sized and small moons

Rings composed of many tiny icy moonlets

Saturn's large moon Titan

- Titan is the only moon in the solar system which has a thick atmosphere.
- It has a thick haze layer that obscures the surface at optical wavelengths.

Saturn's large moon Titan

- Atmospheric composition:
$-90 \% \mathrm{~N}_{2}$
-5\% Argon
$-5 \% \mathrm{CH}_{4}$ (methane)
- other hydrocarbons
- Hazy

Saturn's large moon Titan

- Relative to Earth:
- 1.5 Atm pressure
- 4x denser
- comparable total mass (1.2x)
- more extended
- due to lower gravity
- Cold

$$
-\quad-180^{\circ} \mathrm{C}
$$

Titan is

- Big for a moon, and
- cold - can retain an atmosphere

atmospheric haze

 in optical light
Underneath the atmosphere is terrain, including seas of liquid hydrocarbons

liquid methane

Some transparent windows in the infrared. Reveals widespread lakes of liquid methane. Weather on Titan involves methane clouds and rain.

Titan's Surface

- The Huygens probe provided a first look at Titan's surface in early 2005.
- It had liquid methane, "rocks" made of ice.

Huygens descent movie

NASA
"Visions of the
Future"
poster series

- free for download

Medium Sized Moons of Saturn

- Almost all of them show evidence of past volcanism and/or tectonics.

Medium Moons of Saturn

Mimas (398 km)

Enceladus (498 km)

Tethys (1060 km)

- Mimas has a big crater that makes it look like the Death Star.

Medium Moons of Saturn

- Ice fountains of

Enceladus suggest it has a subsurface ocean.

- "Cryovolcanism" - the "magma" is water.

NASA
"Visions of the
Future"
poster series

Apparently NASA artists think you'll need a cane.
In zero g.

Dione (1118 km)

Rhea
(1528 km)

lapetus
(1436 km)

- lapetus is dark on one side \& bright on the other. It seems to have collected a goo of space debris emitted by Phoebe on the leading (dark) side of its orbit.

Medium Moons of Saturn

- lapetus has a curious ridge around much of its equator

Small moons can also be weird. Hyperion looks like a sponge.

Moons of Uranus

Miranda

Ariel

- They have varying amounts of geological activity.
- Miranda has large tectonic features and few craters (possibly indicating an episode of tidal heating in past).
- Frankenstein's moon

Moons of Neptune

Triton

-120

Neptune's Moon Triton

- larger than Pluto!

The occasional geyser, heated by sunlight, streaks the downwind terrain with dark material

This close-up shows lava-filled impact basins similar to the lunar maria, but the lava was water or slush rather than molten rock.

- Evidence for past geological activity
- orbits retrograde
- unique for such a large moon
- may have been a binary partner of Pluto captured by Neptune

- tidally locked, like Earth's moon
- orbit is retrograde
- and highly inclined (40 degres)
- not stable - being pulled in by tides
- will eventually make rings!

geysers

Why are small icy moons more geologically active than small rocky planets?

- Rock melts at higher temperatures.
- Only large rocky planets have enough heat for activity.
- Ice melts at lower temperatures.
- Tidal heating can melt internal ice, driving activity.

Saturn's rings

Note refraction in atmosphere

What are Saturn's rings like?

- They are made up of numerous, small, icy particles.
- They orbit over Saturn's equator.
- They are very thin.

Spacecraft View of Ring Gaps

b This image of Saturn's rings from the Cassini spacecraft reveals many individual rings separated by narrow gaps.

Artist's Conception in Ring

Elaborate structure in rings controlled by the gravity of "shepherd" moons

Pan

Prometheus

- Recently discovered outer ring

Debris knocked loose from Phoebe creates a dust ring that tints the leading side of lapetus

Iapetus
material accreted from Pheobe dust ring

Dust Ring

How do other jovian ring systems compare to Saturn's?

Jupiter

Jovian Ring Systems

- All four jovian planets have ring systems.
- Others have smaller, darker ring particles than does Saturn.
- Rings and moons ubiquitous around Jovian planets
- like small solar systems.

Rings are short-lived yet ubiquitous

- Rings form from dust created in impacts on moons orbiting the Jovian planets.
- There must be a continuous replacement of tiny particles.
- The tiny particles that make up the rings are subject to non-gravitational forces (photon pressure, solar wind) that push them out of orbit.
- The most likely source is impacts with jovian moons.
- The dust emitted by Phoebe is an example of ring building in progress.
- can also form from the break-up of a large moon that falls within the Roche limit for tidal destruction
- Saturn's rings; Triton's ultimate fate?

