Electromagnetic Radiation

- Thermal Radiation
 - Wien's Law
 - Stefan-Boltzmann Law
- Kirchhoff's Laws
 - continuum spectra
 - emission spectra
 - absorption spectra
- Doppler effect

Thermal Radiation

- Hot, dense objects emit thermal radiation
 includes stars, planets, and you.
- An object's thermal radiation spectrum depends on its **temperature**.

Properties of Thermal Radiation

- 1. Hotter objects emit more light at all frequencies per unit area.
- 2. Hotter objects emit photons with a higher average energy.

Wien's Law

• $\lambda_p T = 2.9 \text{ x } 10^6 \text{ nm K}$

- λ_p is the wavelength of maximum emission (in nanometers nano = 10⁻⁹)
- T is temperature (in degrees Kelvin)

As **T** increases, wavelength decreases. So hot object blue; cool objects red.

2 Examples:

10,000 nm

- Human body -T = 310 K $\lambda_p = \frac{2.9 \times 10^6 \text{ nm K}}{310 \text{ K}}$
 - We radiate in the infrared
- The Sun

- T = 5,800 K

$$\lambda_p = \frac{2.9 \times 10^6 \text{ nm K}}{5800 \text{ K}} = 500 \text{ nm}$$

– The sun radiates visible light

Properties of Thermal Radiation

Hotter objects emit photons with a higher average energy. $\hat{}$

Stefan-Boltzmann Law

$$L = 4\pi R^2 \sigma T^4$$

surface area of a sphere

- **L** = Luminosity (power radiated)
- $\mathbf{R} = \text{Radius} (\text{e.g.}, \text{of a star})$
- $\mathbf{T} =$ Temperature (of radiating surface, in K)
- $\boldsymbol{\sigma}$ = Stefan-Boltzmann constant
 - just a number to make units work right
- $L \propto R^2 T^4$ The absolute brightness of a star depends on its size (**R**) and temperature (**T**).

Properties of Thermal Radiation

Hotter objects emit more light at all frequencies per unit area.

Total luminosity is the area under the curve

Inverse square law

- Just a geometrical effect
 - Light from a point source (e.g., a light bulb or a star) gets spread out in all directions.
 - diminishes by the surface are of the sphere is fills

apparent
$$b = \frac{L}{4\pi d^2}$$

How bright we perceive a star to be

depends on both its intrinsic luminosity and its distance from us.

Three basic types of spectra

Spectra of astrophysical objects are usually combinations of these three basic types.

Kirchhoff's Laws

- Hot, dense objects emit a
 - continuous spectrum e.g., a light bulb
 - light of all colors & wavelengths
 - follows thermal distribution
 - obeys Wien's & Steffan-Boltzmann Laws.
- Hot, diffuse gas emits light only at specific wavelengths. e.g., a neon light
 - emission line spectrum
- A cool gas obscuring a continuum source will absorb specific wavelengths

e.g., a star

absorption line spectrum

Continuous Spectrum

• The spectrum of a common (incandescent) light bulb spans all visible wavelengths, without interruption.

Emission Line Spectrum

• A thin or low-density cloud of gas emits light only at specific wavelengths that depend on its composition and temperature, producing a spectrum with bright emission lines.

Absorption Line Spectrum

• A cloud of gas between us and a light bulb can absorb light of specific wavelengths, leaving dark absorption lines in the spectrum.

How does light tell us what things are made of?

Spectrum of the Sun

Atomic Terminology

- Atomic Number = # of protons in nucleus
- Atomic Mass Number = # of protons + neutrons

Periodic Table of the Elements

H Hydrogen		i chioare fubic of the Elements												He Helium			
3	4	um l										5	6	7	8	9	10
Li	Be											B	C	N	O	F	Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11	12	nesium										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tİ	Pb	Bi	Po	At	Rn
Cesium	Barium	Lutetium	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	_{Gold}	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87 Fr Francium	88 Ra Radium	103 Lr Lawrencium	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111	112	113	114	115	116	117	118

_	57	58	59	60	61	62	63	64	65	66	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium

1

Atomic Terminology

• Isotope: same # of protons but different # of neutrons (4He, 3He)

• Molecules: consist of two or more atoms (H₂O, CO₂)

Energy levels of hydrogen

- Each type of atom has a unique set of energy levels.
- Each transition
 corresponds to a
 unique photon
 energy, frequency,
 and wavelength.

 Downward transitions produce a unique pattern of emission lines.

656.3-nm photon

bit

 Atoms can absorb photons with those same energies, so upward transitions produce absorption lines.

 (a) Atom absorbs a 656.3-nm photon; absorbed energy causes electron to jump from the n = 2 orbit up the n = 3 orbit

© 2006 Pearson Education, Inc., publishing as Addison Wesley

• Each type of atom has a unique spectral fingerprint.

• Observing the fingerprints in a spectrum tells us which kinds of atoms are present.

Example: Solar Spectrum

All the dark regions are absorption lines due to all the elements in the sun's atmosphere. The strengths of the lines tell us about the sun's composition and other physical properties.

Solar composition

- 73% Hydrogen
- 25% Helium
- 2% everything else
 - "metals"

- Other stars similar
 - H & He most common stuff in the universe
 - Helium was *discovered* in the spectrum of the sun

Interpreting an Actual Spectrum

• By carefully studying the features in a spectrum, we can learn a great deal about the object that created it.

What is this object? Mars!

We can learn an enormous amount from spectra: temperature, density, and composition

© 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley