Today

- Moons of the solar system
- Rings

Events

- Homework 5
- Due next time

NASA
"Visions of the
Future"
poster series
cold brittle surface ice

Ganymede

- Largest moon in the solar system
- Clear evidence of geological activity
- Salty ocean under thick crust of ice
- Tidal heating plus heat from radio-active decay?

Ganymede Interior

Ice crust (~150 km thick)
Saline ocean ($\sim 100 \mathrm{~km}$ thick) Ice mantle

Rocky mantle

Callisto

- "Classic" cratered iceball
- No tidal heating, no orbital resonances

Saturn

- Has one large moon - Titan
a large number of medium-sized and small moons

Rings composed of many tiny icy moonlets

Saturn's large moon Titan

- Titan is the only moon in the solar system which has a thick atmosphere.
- It has a thick haze layer that obscures the surface at optical wavelengths.

Saturn's large moon Titan

- Atmospheric composition:
$-90 \% \mathrm{~N}_{2}$
- 5\% Argon
$-5 \% \mathrm{CH}_{4}$ (methane)
- other hydrocarbons
- Hazy

Saturn's large moon Titan

- Relative to Earth:
- 1.5 Atm pressure
- 4x denser
- comparable total mass (1.2x)
- more extended
- due to lower gravity
- Cold

$$
-\quad-180^{\circ} \mathrm{C}
$$

Titan is

- Big for a moon, and
- cold - can retain an atmosphere

atmospheric haze

 in optical lightUnderneath the
atmosphere is terrain,
including seas
of liquid
hydrocarbons

liquid methane

Some transparent windows in the infrared. Reveals widespread lakes of liquid methane. Weather on Titan involves methane clouds and rain.

Titan's Surface

- The Huygens probe provided a first look at Titan's surface in early 2005.
- It had liquid methane, "rocks" made of ice.

Huygens descent movie
https://www.youtube.com/watch?v=HtYDPj6eFLc https://www.youtube.com/watch?v=YErUVOOFSS8 https://www.youtube.com/watch?v=bS9wlVsFlzA

Titan's Surface

- The Huygens probe provided a first look at Titan's surface in early 2005.
- It had liquid methane, "rocks" made of ice.

Huygens descent movie

NASA

"Visions of the
Future"
poster series

Medium Moons of Saturn

- Almost all of them show evidence of past volcanism and/or tectonics.

Medium Moons of Saturn

Mimas (398 km)

Enceladus (498 km)

Tethys (1060 km)

- Mimas has a big crater that makes it look like the Death Star.

Medium Moons of Saturn

- Ice fountains of

Enceladus suggest it may have a subsurface ocean.

- "Cryovolcanism - the "magma" is water.

NASA
"Visions of the
Future"
poster series

Apparently NASA artists think you'll need a cane.
In zero g.

Dione (1118 km)

Rhea (1528 km)

lapetus
(1436 km)

- lapetus is dark on one side \& bright on the other. It seems to have collected a goo of space debris emitted by Phoebe on the leading (dark) side of its orbit.

Medium Moons of Saturn

- lapetus has a curious ridge around much of its equator

Small moons can also be weird. Hyperion looks like a sponge.

Uranus medium sized moons
Miranda
Ariel
Umbriel

Neptune one big moon

Triton

Titania
Oberon

Other objects for comparison

Mercury

Moon

Pluto

Moons of Uranus

Miranda

Ariel

- They have varying amounts of geological activity.
- Miranda has large tectonic features and few craters (possibly indicating an episode of tidal heating in past).

Moons of Neptune

Triton

$1 \% 20$
\qquad

5,5
\qquad

4.43
y jemeth

Neptune's Moon Triton

- Similar to Pluto, but larger

The occasional geyser, heated by sunlight, streaks the downwind terrain with dark material

This close-up shows lava-filled impact basins similar to the lunar maria, but the lava was water or slush rather than molten rock.

- Evidence for past geological activity
- orbits retrograde - unique for such a large moon
- may have been a binary partner of Pluto captured by Neptune

- tidally locked, like Earth's moon
- orbit is retrograde
- and highly inclined (40 degres)
- not stable
- will eventually make rings!

geysers

Why are small icy moons more geologically active than small rocky planets?

- Rock melts at higher temperatures.
- Only large rocky planets have enough heat for activity.
- Ice melts at lower temperatures.
- Tidal heating can melt internal ice, driving activity.

Saturn's rings

Note refraction in atmosphere

What are Saturn's rings like?

- They are made up of numerous, small, icy particles.
- They orbit over Saturn's equator.
- They are very thin.
https://saturn.jpl.nasa.gov/resources/7628/
https://www.youtube.com/watch?v=xrGAQCq9BMU

Spacecraft View of Ring Gaps

b This image of Saturn's rings from the Cassini spacecraft reveals many individual rings separated by narrow gaps.

Artist's Conception in Ring

Elaborate structure in rings controlled by the gravity of "shepherd" moons

- Recently discovered outer ring

Saturn

Iapetus

Dust Ring

How do other jovian ring systems compare to Saturn's?

Jupiter

Jovian Ring Systems

- All four jovian planets have ring systems.
- Others have smaller, darker ring particles than does Saturn.
- Rings and moons ubiquitous around Jovian planets
- like small solar systems.

Rings are short-lived yet ubiquitous

- Rings form from dust created in impacts on moons orbiting the Jovian planets.
- There must be a continuous replacement of tiny particles.
- The tiny particles that make up the rings are subject to non-gravitational forces (photon pressure, solar wind) that push them out of orbit.
- The most likely source is impacts with jovian moons.
- The dust emitted by Phoebe is an example of ring building in progress.

- Jovian planets all have rings because they possess many small moons close in.
- Impacts on these moons are random.
- rings come and go
- Saturn's incredible rings may be an "accident" of our time. - i.e., a recent ice-shattering event as a result of any icy moon getting too close - inside the Roche limit
- Roche limit: over/under line where tidal forces will rip a small body apart

Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts

What are asteroids like?

Asteroid traversing sky due to orbital motion
(time lapse)

Asteroid Facts

- Asteroids are rocky leftovers of planet formation.
- "Rubble Piles"
- loose collection of rocks; not one big one.
- The largest is Ceres, diameter $\sim 1,000 \mathrm{~km}$.
- There are 150,000 in catalogs, and probably over a million with diameter $>1 \mathrm{~km}$.
- Small asteroids are more common than large asteroids.
- All the asteroids in the solar system wouldn't add up to even a small terrestrial planet.

Lots of small bodies, but not much mass.

Diameter, km

- Asteroids are cratered and not round.

