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What gets us into trouble is not
what we don t know.

It s what we know for sure that
just aint so.

- Mark Twain




A few things we know for sure...
V20 = 4T1Gp

F = ma

which basically means

mV?%/R = GMm/R?

VZ = GMIR

ergo...

The universe is filled with nonbaryonic cold dark matter.
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Galaxy Cluster




Large Scale Structure




What is the Dark Matter?

ic Dark Matter

NorfMa# things:

int stars, brown dwarfs

other hard-to-see objects (planets, gas)

Matter
u s - got mass, but not enough

¢/ Cold Dark Matter
Some new fundamental particle
doesn’t interact with light, so quite invisible.
Two big motivations:
|) total mass outweighs normal mass from BBN
2) needed to grow cosmic structure

Hot
ne




(I) There’s more mass than BBN allows in baryons
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(2) There isn’t enough time to form the observed
cosmic structures from the smooth initial conditions unless
there is a component of mass independent of photons.

t=14x10"yr

t=18x10yr

- — —
-~

very smooth: dp/p ~ 107

5 - very lumpy: 0p/p ~ |
p/p ot

Dark matter is commonly thought
to be a new particle called a WIMP



Cosmology only works with

e non-baryonic cold dark matter
ewhatever it 1s (e.g., WIMPs)

e dark energy
ewhatever that even means

e dark baryons
e 29% not accounted for

We have direct knowledge of only 3.5% of the total
mass-energy density of the universe



Dark matter is commonly thought
to be a new particle called a WIMP
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Excluded in 2014
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, A°sihgle galaxy might seem a little thmg to. those who
“consider only the lmmeasumble vastness Of e

universe, and not the mmute precision to wh-lch all
'thmgs therem are shaped e

-

[

Paraphrased from the Ainulindalé by J.R .R. Tolkein
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Solve Poisson equation numerically to obtain V(r) for observed baryon distribution



Flat rotation curves
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Some galaxies are

High Surface Brightness (HSB)

Others are

| Low Surface Brightness (LSB)




Tully-Fisher Relation

Therefore

| Galaxies of different
|surface brightnesses
1 should form distinct

10°

Newton says oy A Tully-Fisher
—_— - . (@) ]
v2 = GM/R. S 2I1J2 1, <g§é.g _: sequences.
: — R < p <222 |
Equivalently, e ;
— 2 Mo > R3.2
2 = M/R ol o
Vvt = GEMX 107
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V (km s71)
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Radius normalized by size of disk.

Dynamics knows about the distribution of light
as well as the total mass.
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GRAN\TY \§
MOND Eﬁ@

MOdified Newtonian Dynamics
introduced by Moti Milgrom in 1983

instead of dark matter; suppose the force law changes such that

M(ala) a = gN-

Above a critical acceleration a, everything is normal.
Below that scale, gravity in effect becomes stronger.
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MODIFICATION OF NEWTONIAN DYNAMICS

A major step in understanding ellipticals can be made
il we can identify them. at least approximately, with
idealized structures such as the FRCL spheres discussed
sbove. I have also studied isotropic and nonisotropic
isothermal spheres, in the modified dynamics, as such
possible structures. [ found that they have properties

which r@emblcfithose
gu)acu“sD:'S\

Mi
VIII. PREDICTIONS
The main predictions conc

lows.

[ Vglocity igm’ s calculatgll with the modified dv-
namics on the basis of the observed mass in galaxies
should agree with the observed curves. Elliptical and SO
galaxies may be the best for this purpose since (a)
;')racu'cally no uncertainty due to obscuration is involved
and () there is not much uncertainty due to the possi-
ble presence of molecular hydrogen.

2. The relation between the asymptotic velocity (¥, )
and the mass of the galaxy (M) (Ve = MGuy) is an
absolute one. E—

3. Analysis of thé :-dynamics in disk galaxies using

the difigd dynamics should vield surf] dengiti :
whic T o S o ingth
sam igﬂ&:ﬁin ics s

vield®a dfScrepancy which increases witll radius in a

predictable manner.

4. Effects of the ifig dy ic Diafi to
be particularly str arfzo e gl for
review of propery .. 7 n

i980). For example. those dwarfs believed to be bound
0 our Galaxy would have internal accelerations typi-
cally of order a;, ~ a,/30. Their (modified) accelera-
ton. g, in the field of the Galaxy is larger than the
internal ones but stll much smaller than a,, g=(8
pe/d)a,, based on a value of Ve =220km s~ for the
Galaxy, and where d is the distance from the dwarf
2alaxy to the center of the Milky Way (d ~ 70-220
Xpe). Whichever way the external acceleration turns out
‘0 affect the internal dvnamics (see the discussion at the
end of § II. the section on small groups in Paper [II. and
Paper I), we predict that when velocity dispersion data
s available for the dwarfs, a large mass discrepancy will
fesult when the conventional dynamics is used to de-
iermine the masses. The dynamically determined mass is
predicted to be larger by a factor of order 10 or more
than that which can be accounted for by stars. In case
the internal dynamics is determined by the externai
dceeleration, we predict this factor to increase with
4nd be of order (4 /8 kpc) (as long as A K g, heg=1).

Prediction | is a very general one. It is worthwhile
listing some of is consequences as separate predictions,
Numbered 5-7 below (note that, in fact, even prediction
s already contained in prediction 1.

MOND predictions

® The Tully-Fisher Relation

381
ar——

5. Measuring local M values in disk galaxies (as-
suming convemi#\mamjcs) should give the follow-
ing resuits: In regions of the galaxy where ¥/, > Qq
the local M /L values should show no indication of
hidden mass. At a certain transition radius, local M/L

salaxies with low surfieé’b rightness

/L as 'we are concerned only with

G e B o
rovide particularly strongestsito

ior in the

This makes

more certain.
6. Disk calaxies with low surface bright rovi

{ articularly strone (a stua_v of a samp!e or such
amxs Hescnbea by Strom 1982 and by Romanishin

sk only while the spheroid can be neglected.
the _determination of mass fr

Disk
® No Dependence on Surface
Brightness

ass and Vﬂat

. velocity

@l 1982). As. low surface brightness—means—smait—
. of

accelerations. the effects of the modification should be
datuexisted in 1 983.
ragus and surface brightness
ga

ple. that the proportionality factor in the M c I* rela-
tion for these g jog | S S

€ hio s

more noticeable in such galaxies. We predict, for exam-
[ ]
] re widel Y
galaxies we

i ® Rotation Curve Shapes

lower the average surface

1ought not to exist.

very small we may have axy in which ¥/, < a, L Surface DenSity ~ Surface Bl’lghtl'less

evervwhere. and analvsis with conventional dvnamics
should vield local V777 v increase
verv small radii.
7. As the studyv of model rotation curves shows, we
predict a_correlation berween the value of the average
surface_densitv (or brishiness) of a 2alaxy and the
steepness with which the rorational X8IOCitv Oses to its
asymptotic value (as measured. for example. by the
radius at which ¥ = V.. /2 in units of the scale length of

the disk). Small surface densities imelv slow g’im‘ V.

IX. DISCUSSION

t

® Detailed Rotation Curve Fits

Stellar Population Mass-to-Light Ratios

The main results of this paper can be summarized by
the statement that the modified dvnamics eliminates the
need to assume hidden mass in galaxies. The effects in
zalaxies which [ have considered. and which are com-
moniy attributed to such hidden mass. are readily ex-
plained by the modification, More specifically:
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MOND predictions

® The Tully-Fisher Relation

/* Slope=4

Vs Normalization = 1/(a,G)

w Fundamentally a relation between
Disk Mass and V.

VO No Dependence on Surface ¢
Brightness °

® Dependence of conventional M/L on
radius and surface brightness

® Rotation Curve Shapes
® Surface Density ~ Surface Brightness
® Detailed Rotation Curve Fits

e Stellar Population Mass-to-Light Ratios



"M’tot/ "M’lum

MOND predictions

® The Tully-Fisher Relation

¢/* Slope=4

M Normalization = 1/(a,G)

w Fundamentally a relation between
Disk Mass and V.

‘/0 No Dependence on Surface
Brightness

VO Dependence of conventional M/L on
radius and surface brightness

® Rotation Curve Shapes
® Surface Density ~ Surface Brightness
® Detailed Rotation Curve Fits

e Stellar Population Mass-to-Light Ratios
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MOND predictions

® The Tully-Fisher Relation

Slope = 4
M Normalization = 1/(a,G)

M Fundamentally a relation between
Disk Mass and V.

‘/0 No Dependence on Surface
Brightness

VO Dependence of conventional M/L on

radius and surface brightness

VO Rotation Curve Shapes

® Surface Density ~ Surface Brightness
® Detailed Rotation Curve Fits

e Stellar Population Mass-to-Light Ratios
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MOND predictions

® The Tully-Fisher Relation

¢/* Slope=4

M Normalization = 1/(a,G)

w Fundamentally a relation between
Disk Mass and V.

‘/0 No Dependence on Surface
Brightness

‘/0 Dependence of conventional M/L on
radius and surface brightness

VO Rotation Curve Shapes
‘/0 Surface Density ~ Surface Brightness
® Detailed Rotation Curve Fits

e Stellar Population Mass-to-Light Ratios
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Sanders & McGaugh 2002, ARA&A, 40, 263
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Sanders & McGaugh 2002, ARA&A, 40, 263
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Sanders & McGaugh 2002, ARA&A, 40, 263
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Residuals of MOND fits
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MOND predictions

® The Tully-Fisher Relation

Slope = 4
Normalization = 1/(a,G)

Fundamentally a relation between
Disk Mass and V.

No Dependence on Surface
Brightness

Dependence of conventional M/L on
radius and surface brightness

Rotation Curve Shapes
Surface Density ~ Surface Brightness
Detailed Rotation Curve Fits

e Stellar Population Mass-to-Light Ratios
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Line: stellar population model
(mean expectation)
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SV /V

MOND predictions

o 500 ® The Tully-Fisher Relation

¢/* Slope=4

M Normalization = 1/(a,G)
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Are you suggesting that there is no dark matter?




What does MOND do to cosmology?




7 (deqrees)
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A new test:
M TIEWW test

the dwarf satellltes of Andromeda
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Velocity dispersions of M31 dwarfs correctly predicted (a priori in many cases) by MOND.
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Velocity dispersions of M31 dwarfs correctly predicted (a priori in many cases) by MOND.
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Pairs of photometrically identical dwarfs should have different velocity dispersion
depending on whether they are isolated are dominated by the external field effect.
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THE EARTH
THE STATE  ISN’T ROUND,
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