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ABSTRACT

Context. The recently proposed aether scalar tensor (AeST) model reproduces both the successes of particle dark matter on cosmo-
logical scales and those of modified Newtonian dynamics (MOND) on galactic scales. But the AeST model reproduces MOND only
up to a certain maximum galactocentric radius. Since MOND is known to fit very well to observations at these scales, this raises the
question of whether the AeST model comes into tension with data.
Aims. We tested whether or not the AeST model is in conflict with observations using a recent analysis of data for weak gravitational
lensing.
Methods. We solved the equations of motion of the AeST model, analyzed the solutions’ behavior, and compared the results to
observational data.
Results. The AeST model shows some deviations from MOND at the radii probed by weak gravitational lensing. The data show no
clear indication of these predicted deviations.

Key words. galaxies: kinematics and dynamics – gravitational lensing: weak – dark matter – gravitation

1. Introduction

Recently, various models have been proposed that combine the
successes of modified Newtonian dynamics (MOND, Milgrom
1983a,b,c; Bekenstein & Milgrom 1984) on galactic scales with
those of the Λ cold dark matter model (ΛCDM) on cosmo-
logical scales. Examples are superfluid dark matter (SFDM,
Berezhiani & Khoury 2015; Berezhiani et al. 2018), the aether
scalar tensor (AeST) model (Skordis & Złosnik 2021, 2022), and
the neutrino-based model by Angus (2009; νHDM). The focus of
the present paper is on the AeST model. An accompanying paper
will look at sfdm.

The AeST model is a relativistic model that can reproduce
MOND in the vicinity of galaxies and fits the fluctuations in
the cosmic microwave background (CMB) as well as the matter
power spectrum. In addition, it has a tensor mode that propagates
at the speed of light which avoids difficulties matching the obser-
vations associated with GW170817 (Sanders 2018; Boran et al.
2018).

An important ingredient in the AeST model is a so-called
ghost condensate (Arkani-Hamed et al. 2004, 2007). This ghost
condensate is the major difference between the action of the
AeST model in the static limit and the standard MOND-type
action for multifield theories (Famaey & McGaugh 2012). The
ghost condensate has an energy density that acts as an additional
source for the gravitational field equations.

The integrated mass of the ghost condensate is generally neg-
ligible close to galaxies, where rotation curves are measured.
Beyond a few hundred kiloparsecs, however, the ghost conden-
sate mass is no longer negligible compared to the baryonic mass
which leads to deviations from MOND.

This is a desired feature for galaxy clusters where obser-
vations require accelerations larger than what MOND predicts
(Aguirre et al. 2001; Sanders 2003; Eckert et al. 2022). It may,
however, be in conflict with unprecedented recent observa-
tions at large radii around galaxies: The analysis of weak-
gravitational lensing data from Brouwer et al. (2021) found
MOND-like behavior around galaxies up to ∼1 Mpc. Here, we
explore whether this finding is compatible with the AeST model.

Since MOND is known to fit these observations well, we
adopt an indirect approach to comparing the AeST model to
observations. First, we introduce a method to quantify the devi-
ation of the AeST model from MOND and analyze for which
solutions these deviations are minimal. We then compare these
optimal solutions – as well as slightly suboptimal ones – to the
observational data.

2. Equations of motion and chemical potential

For galaxies we can use the quasi-static weak-field limit of
the AeST model. In this limit, the model can be described by
two fields, Φ̂ and ϕ, whose equations of motion are (at least
in the spherically symmetric case that interests us here, see
Appendix A),

∆Φ̂ = fG · 4πGN (ρb + ρc) , (1a)

∇

(
µ̃

(
|∇ϕ|

a0

)
∇ϕ

)
= fG · 4πGN (ρb + ρc) , (1b)

where a0 is the MOND acceleration scale and fG is the conver-
sion factor between Newton’s gravitational constant GN and the
constant Ĝ that appears in the Lagrangian (see Appendix A). We
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use a0 = 1.2 × 10−10 m s−2 (Lelli et al. 2017). Both fields are
sourced by the baryonic energy density ρb and the ghost con-
densate density ρc. The function µ̃ can be freely chosen in this
model and corresponds to an interpolation function of MOND.
That is, it determines how the model interpolates between New-
tonian gravity at large accelerations and MOND-like gravity at
small accelerations. The constant fG determines how much of
the total acceleration (see below) in the Newtonian limit is due
to ϕ and how much is due to Φ̂.

In the AeST model, ordinary matter couples to the metric
gµν in the usual way. The metric has the same form as in gen-
eral relativity (GR), but with the Newtonian potential Φ being
a combination of Φ̂ and ϕ, namely Φ ≡ Φ̂ + ϕ. Thus, the total
acceleration felt by matter is atot ≡ aΦ̂ + aϕ ≡ −∇Φ̂ − ∇ϕ.

The ghost condensate energy density ρc is given by

ρc =
m2

4πGN fG

(
ϕ̇

Q0
− Φ̂ − ϕ

)
, (2)

where m and Q0 are constants. For cosmology,
Skordis & Złosnik (2021) considered nonlinear corrections
to this. We do not include these here for reasons discussed in
Appendix I.

We did not set ϕ̇ = 0 in Eq. (2) because any constant ϕ̇ = − ˙̂Φ
still gives time-independent equations of motion. Indeed, ϕ̇ rep-
resents the chemical potential of the condensate. To see this, one
first observes that the model is shift-symmetric under ϕ→ ϕ+ c̃,
Φ̂→ Φ̂− c̃ for any constant c̃. In general, to describe equilibrium
states, one introduces a chemical potential µ for each symmetry
by shifting the Hamiltonian H by H → H − µQ where Q is the
conserved quantity associated with the symmetry. In the AeST
model and on the level of the Lagrangian, this corresponds to
shifting ϕ̇→ ϕ̇+µ and ˙̂Φ→ ˙̂Φ−µ (Mistele 2019; Kapusta 1981;
Haber & Weldon 1982; Bilic 2008) or equivalently to consider-
ing solutions with ϕ̇ = µ and ˙̂Φ = −µ. (We note that the parame-
ter m was called µ in Skordis & Złosnik 2021. We use µ instead
to denote the chemical potential).

Consequently, the behavior of the AeST model around galax-
ies depends on the choice of this chemical potential of the ghost
condensate. This corresponds to a choice of boundary condition
for the combination µ/Q0−Φ which is a gauge-invariant variable
as shown in Skordis & Złosnik (2022). This is an important dif-
ference to MOND where ρb alone determines the phenomenol-
ogy around galaxies.

For real galaxies, these chemical potentials are ultimately set
by galaxy formation. Since no simulations of nonlinear struc-
ture formation in the AeST model are available, we treated the
chemical potential of each galaxy as a free parameter. In this
regard, the AeST model is similar to SFDM. Both models require
a choice of chemical potential to make predictions in galax-
ies (Berezhiani & Khoury 2015; Berezhiani et al. 2018; Mistele
2019, 2021; Hossenfelder & Mistele 2020; Mistele et al. 2022).

We now assume spherical symmetry. Then, solutions have
the same form as in MOND, just with the baryonic mass replaced
by an effective mass that includes the condensate mass,

Meff(r) ≡ Mb(r) + Mc(r) ≡ 4π
∫ r

0
dr′r′2(ρb(r′) + ρc(r′)). (3)

Thus, with the Newtonian acceleration aN in the negative radial
direction,

aN(r) ≡ ab(r) + ac(r) ≡
GNMb(r)

r2 +
GNMc(r)

r2 , (4)

we can write the total acceleration in the negative radial direction
atot as atot = aN(r) · ν (|aN(r)|/a0) where the interpolation func-
tion ν is determined by the free function µ̃ in the AeST model
(see Eq. (1)). Unlike in MOND, aN can be negative because the
condensate mass Mc can be negative. We discuss this in more
detail below.

For simplicity, we chose the interpolation function such that

atot(r) = seff ·
(
|aN(r)| +

√
a0|aN(r)|

)
, (5)

where seff is the sign of Meff . We recover MOND by leaving
out the contributions from the condensate, Mc = 0. Thus, when
comparing the AeST model to MOND below, we assumed the
following acceleration for MOND,

aMOND(r) ≡ ab(r) +
√

a0ab(r). (6)

This assumes the same interpolation function for MOND and the
AeST model.

This interpolation function has the correct limits, namely
aMOND → ab for accelerations much larger than a0 and aMOND →√

a0ab for accelerations much smaller than a0. Still, in general,
this choice is too simplistic. But it suffices for our purposes
because we are only interested in the small-acceleration regime
where all interpolation functions give aMOND ≈

√
a0ab.

The total acceleration atot in the AeST model does not explic-
itly depend on fG and is the sum of aΦ̂ = fG aN and aϕ =

seff((1 − fG) |aN| +
√

a0|aN|). Below, we refer to its MOND-like
part

√
a0|aN| and its Newton-like part aN, respectively, as

aΦ̃ ≡ seff |aN|, aϕ̃ ≡ seff

√
a0|aN|. (7)

In the following we assumed point particle baryonic masses
for simplicity. This suffices for our purposes, because the details
of the baryonic mass distribution do not matter much at the large
galactocentric radii we consider. See Appendix D for an approx-
imate analytical solution for this case and Appendix E for how
we calculate numerical solutions.

3. Deviations from MOND

The AeST model reproduces MOND so long as the condensate’s
total mass is small compared to the baryonic mass. This condi-
tion is usually fulfilled in the inner parts of galaxies but not far
away from the galaxy. Indeed, given a maximum allowed frac-
tional deviation δ from MOND, there is an optimal boundary
condition for which the MOND-like behavior extends to a finite
maximum radius rmax. For all other boundary conditions, devia-
tions from MOND set in earlier. This is illustrated in Fig. 1.

Specifically, we imposed the maximum allowed deviation δ
as∣∣∣∣∣∣ aϕ̃(r)
√

a0ab(r)
− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ seff ·
√

a0|aN(r)|
√

a0ab(r)
− 1

∣∣∣∣∣∣ ≤ δ . (8)

That is, we compared the accelerations in the AeST model and
MOND, focusing on the MOND-like contributions

√
a0aN and

√
a0ab. Alternatively, one could compare the total acceleration

in both models, that is, aN +
√

a0aN and ab +
√

a0ab. But at
the large radii we consider here, the difference is negligible (see
Appendix G) and we used Eq. (8) for simplicity.

The maximal radius rmax, up to which we allowed accelera-
tions to deviate by less than a fraction δ from MOND, is given
by

rmax

rMOND
≈ 1.53

9 (1 + δ)2 − 1
r2

MOND m2/ fG

1/3

. (9)
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Fig. 1. Numerical solution with the optimal boundary condition for
δ = 0.05 (solid blue line). That is, the solution for which aϕ̃ stays
within a fraction δ of the MOND-like acceleration

√
a0ab up to the

maximum possible radius rmax. This is for Mb = 2 × 1010 M� and
fG/m2 = 0.99 Mpc2. The dashed red and green lines show solutions
with the optimal boundary condition multiplied by 1.1 and 0.9, respec-
tively. Vertical black lines indicate the maximum radius rmax and the
radius where the optimal solution reaches its maximum rmaxratio.

Fig. 2. Acceleration ab,min = GN Mb/r2
max down to which the acceleration

aϕ̃ = seff

√
a0|aN| can, at best, stay within a fraction δ of the MOND-like

acceleration
√

a0ab as a function of δ. This is for fG/m2 = 0.99 Mpc2.
We show the result for both numerical (solid lines) and analytical (dot-
ted lines) solutions and for various baryonic masses Mb. The analytical
approximation is shown only where our estimate Eq. (J.36) says that
the approximation is better than q = 10%.

Here, rMOND is a constant known as the MOND-radius√
GNMb/a0. See Appendix G for a derivation of those proper-

ties and an analysis of the conditions under which this estimate
holds.

This maximum radius rmax scales as M1/6
b . This means that

more massive galaxies can stay close to MOND up to larger radii
than less massive galaxies. In MOND, however, accelerations
ab = GNMb/r2 are more relevant than radii r. For example, the
Radial Acceleration Relation (RAR, Lelli et al. 2017) relates the
total acceleration atot and the Newtonian baryonic acceleration
ab.

The maximum radius rmax corresponds to a minimum accel-
eration ab,min = GNMb/r2

max which scales as M2/3
b . Thus, in

acceleration space, less massive galaxies can stay close to
MOND for longer than more massive galaxies. We show ab,min

Fig. 3. RAR for different baryonic masses and boundary conditions for
numerical solutions with fG/m2 = 0.99 Mpc2. The solid lines are for
boundary conditions where aϕ̃ stays within a fraction δ = 0.1 from
MOND up to the largest possible radius for a given baryonic mass
Mb. Dash-dotted and dashed lines correspond to these optimal bound-
ary conditions multiplied by factors [0.8, 0.9] and [1.2, 1.4], respec-
tively. The dips all go to −∞ since they correspond to Meff = 0 (i.e.,
atot = 0), but this is not resolved numerically. The y-axis shows the
modulus of atot. So after the dip, the direction of the accelerations is
flipped. All solutions are cut off where the condensate density of the
largest boundary-condition solution for a given Mb first drops to zero.
The observed weak-lensing RAR does not include the hot gas esti-
mate of Brouwer et al. (2021). We correct the observed weak-lensing
RAR to be consistent with the M/L∗ scale of the observed kinematic
RAR (McGaugh, priv. comm.). Data points below ab = 10−13 m/s2

have a lighter color since the isolation criterion is less reliable there
(Brouwer et al. 2021).

in Fig. 2 and illustrate the RAR for various baryonic masses in
Fig. 3.

The scale of rmax is set by the combination m2/ fG.
Skordis & Złosnik (2021) require m2/ fG . 1 Mpc−2. As we
show below, this does not guarantee MOND-like behavior for
weak lensing which probes radii up to ∼1 Mpc. One might there-
fore want to choose an even smaller m2/ fG. But this is not easily
possible. Indeed, galaxy clusters require more acceleration than
MOND predicts (Aguirre et al. 2001; Sanders 2003; Eckert et al.
2022). To naturally explain this in the AeST model, m2/ fG can-
not be much smaller than 1 Mpc−2 and we assumed

m2/ fG ∼ (1 Mpc)−2. (10)

We obtained this estimate by requiring that the minimum accel-
eration ab,min in AeST matches where observed clusters deviate
from MOND. For example, if we require that the total accel-
eration atot in a cluster with Mb = 1014 M� deviates by at
least δ = 10% from MOND at ab,min = 10−10.5 m s−2, we find
m2/ fG > 2.5 Mpc−2 (see also Table 1)1.

Beyond the radius where the AeST model deviates from
MOND, the gravitational force eventually becomes oscillatory
(Skordis & Złosnik 2021), see also Appendix F, as is typical for
condensate models (Arkani-Hamed et al. 2007). The reason is
that Meff(r) and the condensate density ρc oscillate. However,
condensates with negative energy-density are unstable (or at

1 Here, we did not use the analytical estimate Eq. (9) for rmax when
calculating ab,min = GN Mb/r2

max. The reason is that Eq. (9) is derived
using approximations that are better for galaxies than for clusters.
Instead, we calculated rmax from numerical solutions of the equations
of motion. Using Eq. (9) would give m2/ fG > 7.9 Mpc−2.
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Table 1. Rough bounds on m2/ fG.

Bound on m2/ fG Description

. 1 Mpc−2 Galaxies, weak lensing (ab ≥ 10−13 m s−2)

. 0.001 Mpc−2 Galaxies, weak lensing (ab ≥ 10−15 m s−2)
& 1 Mpc−2 Galaxy clusters (ab ∼ 10−10.5 m s−2)

Notes. For the bounds from galaxies, we require that galaxies with
Mb = 1011 M� can reproduce MOND up to a fraction δ = 10% for
the accelerations ab probed by weak lensing. That is, we require that
the minimum acceleration ab,min is sufficiently small for these galax-
ies. For the bounds for galaxy clusters, we require that a cluster with
Mb = 1014 M� cannot reproduce MOND to better than δ = 10% at
accelerations ab a bit below the MOND acceleration scale a0. That is,
we require that ab,min is sufficiently large for clusters. The bounds on
m2/ fG scale roughly as δ a3/2

b,min/Mb for small δ.

least we would expect a good reason for why they are not unsta-
ble). We therefore expect the AeST model to be unstable in this
oscillatory regime. We would then no longer have a macroscop-
ically coherent condensate and the quasi-static action Eq. (A.1)
is no longer good to use.

In superfluid dark matter models, for example, we assume
that when the energy-density begins to oscillate that we
have to continue the condensate density by a standard (non-
superfluid) phase (Berezhiani & Khoury 2015; Berezhiani et al.
2018). Something similar might happen in the AeST model.

However, so far, a stability analysis for the AeST model in a
galactic background has not been done, so maybe the oscillatory
regime turns out to be stable after all. Below, we therefore keep
in mind both possibilities and discuss where our results depend
on whether or not negative condensate densities are stable. For
example, Fig. 4 shows the solutions from Fig. 3 but truncated
where the condensate density first drops to zero.

4. Weak lensing

The AeST model usually reproduces MOND at the radii probed
by rotation curves because the condensate density Mc is neg-
ligible there. This means that probing the effects of the con-
densate requires a different approach. The option we pursued
here is to use the recent weak-lensing analysis of Brouwer et al.
(2021) who find that accelerations are MOND-like down to at
least ab ∼ 10−13 m s−2.

In the AeST model, matter is coupled to the fields ϕ and Φ̂
through the metric gµν. In the weak-field limit, this metric has the
same form as in GR, just with the Newtonian potential replaced
by Φ = Φ̂ + ϕ. We can therefore use the standard formalism for
weak lensing just by taking into account Φ = Φ̂ + ϕ.

Most galaxies in the weak-lensing sample from
Brouwer et al. (2021) have baryonic masses between 1010 M�
and 1011 M�. For the AeST model with fG/m2 = 0.99 Mpc2,
Fig. 2 shows that MOND-like behavior up to a few 10% is
possible down to ab ∼ 10−13 m s−2 for those galaxies in the
sample with baryonic masses ∼1010 M�.

Such O(10%) deviations may be sufficient to match obser-
vations. But it is important to keep in mind that in this regime
where deviations from MOND start to become important, the
details depend on the precise baryonic masses and boundary con-
ditions of the galaxy sample as well as the precise value of the
model parameter m2/ fG. For example, Fig. 2 shows solutions for

Fig. 4. Same as Fig. 3 but with all solutions truncated where the con-
densate density first drops to zero, that is, truncated where the solutions
become potentially unstable.

boundary conditions that are optimal for reproducing MOND.
But there is no reason why galaxy formation should result in
such optimal boundary conditions. One would therefore expect
deviations of AeST from MOND to generally be larger than in
the optimal case we depict.

We can derive a rough upper bound on the model param-
eter m2/ fG by requiring that AeST can reproduce MOND in
the regime probed by weak lensing. For this, we used the min-
imum acceleration ab,min = GNMb/r2

max with rmax from Eq. (9).
Many of the galaxies in the sample used by Brouwer et al. (2021)
have baryonic masses close to 1011 M�. If we require that such
galaxies can reproduce MOND down to ab,min = 10−15 m s−2

and up to a fraction δ = 10%, we find m2/ fG < 0.001 Mpc−2.
There is a lot of uncertainty in this upper bound. For example,
m2/ fG = 0.001 Mpc−2 is small enough that the ghost conden-
sate density in galaxies as given by Eq. (2) is typically smaller
than the cosmological background density. So, at least in prin-
ciple, there could be corrections from the fact that we should
expand around a cosmological background, not around empty
Minkowski space (which is how Eq. (1) was derived)2. Also, if
we disregard the data below ab = 10−13 m s−2 because the iso-
lation criterion used in the weak-lensing analysis is less reli-
able there (Brouwer et al. 2021), we obtain the weaker bound
m2/ fG < 1 Mpc−2. Still, a tension between the value of m2/ fG
required by weak lensing and that required by galaxy clusters,
m2/ fG & 1 Mpc−2, seems likely (see Table 1).

Another aspect to take into account is that, in practice,
the weak-lensing RAR is not known for individual galaxies.
It is known only in an averaged sense for a large sample of
stacked galaxies. It is possible that stacking gives a MOND-like
RAR even if most galaxies individually do not. As we show in
Appendix H, in our case, stacking simply means calculating a
weighted average in acceleration space. So, indeed, accelerations
larger than MOND from some galaxies can cancel accelerations
smaller than MOND from other galaxies.

To illustrate this, we considered a sample of galaxies with
a fixed baryonic mass Mb but various boundary conditions. For
simplicity, we weighed all galaxies equally when averaging. One
example is shown in Fig. 5. We see how a stacked RAR can be

2 But we note that there is no reason to expect that such correc-
tions would help to explain why weak-lensing observations follow the
MOND prediction down to very small accelerations ab.
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Fig. 5. RAR for solutions with fixed baryonic mass Mb = 1011 M� for
various boundary conditions (green dotted lines) and the correspond-
ing stacked RAR (solid red line). This is for fG/m2 = 0.99 Mpc2.
The boundary conditions of the individual solutions are in the range
0.5−1.5 times the optimal boundary condition for δ = 0.05 with a step
size of 0.1 times the optimal one. Solutions are cut off where the first of
the individual solutions reaches atot = 0. We also show the analytically
stacked RAR according to formula Eq. (H.9).

Fig. 6. Same as Fig. 5 but with all individual stacked solutions having
positive condensate density. The individual solutions are for boundary
conditions in the range 1.0−2.0 times the optimal boundary condition
for δ = 0.05 with a step size of 0.1 times the optimal one. Solutions are
cut off where the first of the individual solutions reaches ρc = 0.

MOND-like even when most individual stacked galaxies are not.
Of course, one does not always get a MOND-like RAR from
stacking. This works only when accelerations below and above
the MOND prediction cancel each other. Whether or not it works
for real lensing galaxies depends on which boundary conditions
are picked by galaxy formation.

In addition, stacking galaxies with different boundary condi-
tions should lead to increased uncertainties at small ab where
different boundary conditions lead to significantly different
accelerations. In principle, such uncertainties might be visible
in the error bars of the observed weak-lensing RAR.

However, we expect that in practice there is often no visi-
ble effect on the error bars. To see this, we first note that the
error bars shown in Figs. 3 and 4 correspond to the uncertainty
of the mean value of atot, obtained by stacking a large number
N of galaxies. They do not represent the scatter from galaxy-
by-galaxy variation. The galaxy-by-galaxy variation is larger
than the uncertainty of the mean by a factor of about

√
N. In

Fig. 7. Observed weak-lensing RAR for ETGs and LTGs from
Brouwer et al. (2021) with the stellar M/L∗ corrected to use the same
stellar population model as the observed kinematic RAR (McGaugh
2022, priv. comm.) relative to the MOND prediction. This does not
include the hot gas estimate from Brouwer et al. (2021). Here, we take
aMOND = abνe(ab/a0) with νe(y) = (1 + e−

√
y)−1 (Lelli et al. 2017). Data

points below ab = 10−13 m s−2 are shown in white since the isolation
criterion is less reliable there (Brouwer et al. 2021).

AeST, different boundary conditions induce a form of galaxy-by-
galaxy variation. Thus, the scatter from solutions with different
boundary conditions should be compared to the larger galaxy-
by-galaxy variation and not to the uncertainty of the mean. Put
differently, the scatter induced by different boundary conditions
should be scaled by a factor 1/

√
N before comparing to the error

bars shown in Figs. 3 and 4. Here, N is on the order of 105

(Brouwer et al. 2021). Thus, one would expect a visible effect
on the error bars only in extreme cases.

4.1. Negative condensate densities

Whether or not stacked galaxies can follow a MOND RAR down
to smaller accelerations than individual galaxies also depends
on whether or not negative condensate densities are stable. To
see this, we note that accelerations are smaller than in MOND
if and only if the effective mass Meff = Mb + Mc is smaller
than in MOND. This is only possible for negative Mc which
requires negative condensate densities. Therefore, if negative
densities are unstable, cancelling accelerations that are larger
against those that are smaller than in MOND does not work.
This is simply because all accelerations are larger than in MOND
if we do not allow for negative densities. This is illustrated in
Fig. 6.

Thus, if negative densities are unstable, one might expect that
the AeST model always gives larger accelerations than MOND.
Moreover, our estimate for ab,min (see Fig. 2) suggests that these
deviations should set in earlier for larger baryonic masses Mb.
And indeed, there are hints of such behavior in the observed
weak-lensing data, see Fig. 7 which shows the weak-lensing data
separately for early-type galaxies (ETGs) and late-type galaxies
(LTGs). We see that the weak-lensing RAR for LTGs follows
the MOND prediction even for ab < 10−13 m s−2 while ETGs
tend toward larger accelerations than MOND. In general, ETGs
have larger baryonic masses than LTGs. So this seems to fit with
the AeST model expectations if negative densities are unstable.

However, this Mb-dependence is not a plausible explanation
for the difference between the observed weak-lensing RARs for
ETGs and LTGs. This is for three reasons.

First, the ETGs and LTGs do not sufficiently differ in bary-
onic mass. What would be required is a difference in Mb of more
than a factor 103/2. To see this, we note that LTGs follow the
MOND prediction for at least one more order of magnitude in ab
compared to ETGs. This translates into a factor >103/2 in terms
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of baryonic mass according to our estimate ab,min ∝ M2/3
b . In

contrast, Brouwer et al. (2021) selected LTGs and ETGs to have
the same stellar mass distribution. With the stellar M/L scale
corrected to be consistent with that of the observed kinematic
RAR, ETG stellar masses would still be larger by a factor 1.4
(McGaugh, priv. comm.). But this is not sufficient here.

Of course, the total baryonic mass should take into account
gas, but this is unlikely to account for the required factor of 103/2

or more, at least with the simple cold gas mass estimate used in
Brouwer et al. (2021). Brouwer et al. (2021) also consider a sce-
nario where ETGs have significantly more hot gas than LTGs.
But even in that scenario, the baryonic masses of ETGs dif-
fer from those of LTGs by only a factor of two or a bit more.
In addition, adopting this scenario means adopting a different
observed lensing RAR. Indeed, as discussed in Brouwer et al.
(2021), in this scenario there might not even be a discrepancy
between ETGs and LTGs left to explain.

Second, the isolation criterion needed to obtain the weak-
lensing RAR might fail for ETGs sooner than it does for LTGs.
One might naturally expect this to be the case since ETGs are
known to be more clustered than LTGs (Dressler 1980). At what
point this comes into play here we cannot judge, but mention it
as a logical possibility.

Third and finally, even if negative densities are indeed unsta-
ble, the AeST model does not necessarily predict larger accel-
erations than MOND. Indeed, it makes no physical sense to
stop looking when the condensate becomes unstable. In a real
galaxy, something else must follow after the condensate phase.
For example, the macroscopically coherent ghost condensate
might be replaced by something closer to a ΛCDM-like colli-
sionless fluid which the AeST model postulates on cosmological
scales (Skordis & Złosnik 2021). In principle, whatever replaces
the ghost condensate might lead to smaller accelerations than
MOND.

That said, the prediction of larger-than-MOND accelerations
remains valid if whatever replaces the ghost condensate has as
its only effect to replace the ghost condensate density by some
other positive density, ρc → ρreplace. This is because then one still
has solutions of the same form as before, just with a different
effective mass Meff → Mb + Mreplace > Mb.

In order to get smaller-than-MOND accelerations, the gen-
eral structure of the solutions must be modified. That is, the
left-hand sides of the equations of motions must be modified,
∆Φ̂ = . . . ,∇ (µ̃(|∇ϕ|/a0)∇ϕ) = · · · → ?. It is not implausible
that this indeed happens since the field ϕ plays a role for both the
ghost condensate (for example, it carries the chemical potential
ϕ̇ = µ) as well as the gravitational force. So outside the conden-
sate phase both could be modified.

4.2. External field effect

Another concern at the small accelerations probed by weak lens-
ing is the external field effect (EFE) of MOND (Milgrom 1983b;
Famaey & McGaugh 2012). The EFE is a consequence of the
specific nonlinear form∇(|∇ϕ|∇ϕ) ∝ ρb of the gravitational field
equations in the small-acceleration limit. The crucial nonlinear-
ity is the same in the AeST model, so there is probably a similar
effect there, at least within the ghost condensate3.

3 The EFE is only relevant in situations that are not spherically sym-
metric. In these cases, as we discuss in Appendix B, the vector field A
of the AeST model cannot be set to zero and the equations of motion
are not given by Eq. (1). Still, there is the same type of nonlinearity and
it is plausible that an effect similar to the MOND EFE exists.

The EFE generally reduces the observationally inferred atot,
while a condensate mass Mc > 0 in the AeST model enhances
this acceleration. In principle, these two effects could cancel
each other to give a MOND-like acceleration even at very large
galactocentric distances, but there is no reason to expect such a
cancellation to generally happen.

And in any case, if negative densities are unstable and the
condensate is replaced by something else at large radii, then any
potential EFE depends on the details of what replaces the ghost
condensate. There could be a modified nonlinear effect that still
allows neighboring galaxies to affect each other in a way that
violates the Strong Equivalence Principle (SEP) like the MOND
EFE does. Or there could be no such effect, possibly restoring
the SEP at large scales.

A restored SEP would fit with the fact that the observed
weak-lensing RAR from Brouwer et al. (2021) shows no signs
of an EFE. But here one must be careful. The EFE pertains to
nonisolated galaxies, while the analysis of Brouwer et al. (2021)
requires isolated galaxies. Thus, any EFE effects may be masked
by violations of this assumption. In addition, the environment-
dependence of the EFE is quite complicated (Llinares et al.
2008; Chae et al. 2021). So it is not even clear for MOND
whether or not a significant EFE is expected here. Still, the EFE
is something to keep in mind as observations and theoretical pre-
dictions are improved.

5. Conclusion

We have explored whether or not the AeST model can explain
the observed MOND-like weak-lensing RAR which probes
unprecedentedly small accelerations. We find that deviations
from MOND start to set in already in the range of the new mea-
surements, creating a tension with data. The model parameter
m2/ fG can be adjusted to avoid this tension, but that likely cre-
ates a tension with observations of galaxy clusters instead.

It seems that keeping the model in agreement with data
would require specific values of boundary conditions for a large
variety of galaxies. While this is possible, we do not know of any
mechanism that would result in these particular boundary condi-
tions. Thus, while we cannot rule out the model, it does seem
that weak-lensing observations pose a challenge for AeST.
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Appendix A: Action and equations of motion

For galaxies, the quasi-static weak-field limit of the AeST model
is relevant. The action in this limit is (Skordis & Złosnik 2021)

S = −

∫
d4x

{
1

8πĜ

[
(∇Φ)2 − 2∇Φ∇ϕ + (∇ϕ)2

−m2
(
ϕ̇

Q0
− Φ

)2

+J
(
(∇ϕ)2

) + Φρb

 , (A.1)

where Ĝ is a constant and the functionJ determines the MOND
interpolation function. We discuss potential higher-order correc-
tions to the m2 term which produces the ghost condensate density
in Appendix I.

The AeST model also contains a unit vector field Aµ. The
form Eq. (A.1) of the action assumes A = 0 (Skordis & Złosnik
2021). In Appendix B we explain why this assumption is correct
in spherical symmetry – which is what we are mainly interested
in here – but not in general.

The quasi-static weak-field limit equations of motion derived
from the action Eq. (A.1) are

∆Φ̂ = 4πĜρb + m2(µ/Q0 − Φ̂ − ϕ) , (A.2a)

∇

(
µ̃

(
|∇ϕ|

a0

)
∇ϕ

)
= 4πĜρb + m2(µ/Q0 − Φ̂ − ϕ) , (A.2b)

where, following Skordis & Złosnik (2021), we have introduced
Φ̂ through Φ ≡ Φ̂ + ϕ and µ̃(|∇ϕ|/a0) = J ′((∇ϕ)2). In
order to reproduce MOND-like behavior for small accelerations
and Newton-like behavior for large accelerations, the function
µ̃(|∇ϕ|/a0) must be proportional to |∇ϕ| for small arguments and
it must be a constant for large arguments. One can parametrize
these limits by a parameter λs (Skordis & Złosnik 2021),

µ̃

(
|∇ϕ|

a0

)∣∣∣∣∣∣
|∇ϕ|→0

=
λs

1 + λs

|∇ϕ|

a0
, µ̃

(
|∇ϕ|

a0

)∣∣∣∣∣∣
|∇ϕ|→∞

= λs . (A.3)

This ensures both a standard Newton regime at large accelera-
tions and a standard MOND regime at small accelerations with
Newtonian gravitational constant

GN ≡ Ĝ
1 + λs

λs
≡ Ĝ · f −1

G . (A.4)

How exactly the function µ̃ interpolates between these two
limits is not specified by the AeST model. Various choices are
possible. A choice of µ̃ corresponds to a choice of the so-called
interpolation function in MOND (Famaey & McGaugh 2012).
Up to the condensate density ρc, these equations are typical of
multifield MOND models (Famaey & McGaugh 2012).

In the small-acceleration limit |∇ϕ| � a0 and without any
baryonic density, ρb = 0, these equations approximately become
∇(|∇ϕ|∇ϕ) = c1 + c2ϕ with constants c1 and c2. This is a special
case of the deep-MOND polytropes studied in Milgrom (2021).
The results of Milgrom (2021) are not directly useful here, how-
ever, because the baryonic density ρb plays a very important role
for the phenomenology of the AeST model as we see below.

Appendix B: The quasi-static limit more generally

Had we not set A to zero by hand, the action in the quasi-static
limit Eq. (A.1) would read,

S = −

∫
d4 x

{
1

8πĜ

[
(∇Φ)2 − 2∇Φ (∇ϕ + Q0 A) + (∇ϕ + Q0 A)2

−m2
(
ϕ̇

Q0
− Φ

)2

+J
(
(∇ϕ + Q0 A)2

)
+

2KB

2 − KB
∇[i A j]∇

[i A j]

 + Φρb

 .

(B.1)

We can decompose A into a divergence-less and a curl-less part,
A ≡ ∇ × Ac + ∇Ad. For time-independent fields – that is, time-
independent up to the chemical potential ϕ̇ = µ = const. – the
results of Skordis & Złosnik (2022) show that we can set Ad = 0
by a gauge transformation.

In spherical symmetry, the curl term ∇× Ac vanishes and the
A equation of motion and the ϕ equation of motion are equiva-
lent. Thus, setting A to zero and using Eq. (A.1) is justified. In
general, however, setting A to zero is inconsistent. This can be
seen from the A equation of motion,

∇Φ +
1

2Q0

2KB

2 − KB
(∆A − ∇(∇ · A)) =

(∇ϕ + Q0 A)
(
1 +J ′

(
(∇ϕ + Q0 A)2

))
. (B.2)

If A were zero, we could infer

∇|∇Φ| × ∇Φ = 0 , (B.3)

by algebraically solving for ∇ϕ and then taking the curl. But
Eq. (B.3) holds only in very special situations, see for example
Brada & Milgrom (1995). Thus, except in a few special cases,
we must not set A = 0 in the quasi-static limit.

Of course, even when Eq. (B.3) does not hold, setting A to
zero might still be a reasonable approximation akin to how it
is often reasonable to neglect a curl term in standard models of
MOND (Famaey & McGaugh 2012). Investigating this is left for
future work.

Appendix C: General structure of the solutions

We now assume spherical symmetry. Then, solutions have the
same form as in standard multifield MOND models except that
the baryonic mass Mb is replaced by the effective mass Meff

which includes the condensate mass Mc in addition to Mb. The
equations of motion are then solved by

aΦ̂ ≡ Φ̂′(r) = fG aN(r) , (C.1a)

aϕ ≡ ϕ′(r) = aN(r)ν̃
(
|aN(r)|

a0

)
, (C.1b)

where aN = GN Meff(r)/r2 and the function ν̃ is determined by µ̃.
See, for example, Famaey & McGaugh (2012) for how these two
are related. The total acceleration in the negative radial direction
felt by matter is then

atot(r) = Φ̂′(r) + ϕ′(r) = aN(r) ·
(

fG + ν̃

(
|aN(r)|

a0

))
≡ aN(r) · ν

(
|aN(r)|

a0

)
, (C.2)

where ν is a MOND interpolation function (Famaey & McGaugh
2012).
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Below, we are mainly interested in the deep-MOND regime
aN � a0. In this regime, the total acceleration does not depend
much on the choice of interpolation function. Thus, we chose an
interpolation function that is easy to handle,

ν(y) ≡ 1 + 1/
√
y . (C.3)

This interpolation function is not, in general, suited to fit galax-
ies (Famaey & McGaugh 2012). But it is sufficient in the small-
acceleration limit in which we are interested here. This implies
for the accelerations due to the field Φ̂ and ϕ,

Φ̂′(r) = seff · fG |aN(r)| , (C.4a)

ϕ′(r) = seff ·
(
(1 − fG) |aN(r)| +

√
a0|aN(r)|

)
, (C.4b)

and therefore for the total acceleration

Φ̂′(r) + ϕ′(r) = seff ·
(
|aN(r)| +

√
a0|aN(r)|

)
= seff ·

(
GN |Meff(r)|

r2 +

√
a0GN |Meff(r)|

r

)
. (C.5)

For later use, we define

Φ̃′(r) ≡ seff · |aN(r)| , ϕ̃′(r) ≡ seff ·
√

a0|aN(r)| . (C.6)

That is, Φ̃ carries the Newton-like part of the total acceleration
and ϕ̃ carries the MOND-like part. The total acceleration can be
calculated from either Φ̃+ ϕ̃ or Φ̂+ϕ since their sum is the same,

Φ̂ + ϕ = Φ̃ + ϕ̃ . (C.7)

Appendix D: Approximate analytical solution

The formal solutions Eq. (C.4) are not directly useful since the
effective mass Meff in aN depends on the value of the fields them-
selves through Φ̂ + ϕ. Equation (C.4) can, however, be used to
recursively solve for Meff starting at small radii where the bary-
onic mass Mb dominates. We first derive the recursion formula
and then use it to obtain a first order approximation for Meff . For
simplicity, we assume a point-particle baryonic mass distribu-
tion, ρb(x) = Mbδ(x).

In the following, we split the fields into a part due only
to baryons, that is, Φ̂b and ϕb, and the rest, ϕc and Φ̂c which
includes the effects of the ghost condensate,

Φ̂ ≡ Φ̂b + Φ̂c , (D.1a)
ϕ ≡ ϕb + ϕc , (D.1b)

where

Φ̂b ≡ − fG
GN Mb

r
, (D.2a)

ϕb ≡ −(1 − fG)
GN Mb

r
+

√
GNa0Mb ln(r/l) , (D.2b)

for some l. This split depends on the additive constants chosen
for Φ̂b and ϕb. In particular, it depends on the choice of l which
parametrizes the additive constant in ϕb.

These additive constants can be shuffled around arbitrarily
within the physical combination

µ/Q0 − Φ̂b − Φ̂c − ϕb − ϕc . (D.3)

To solve the equations of motions, we need to impose a bound-
ary condition for this combination. In practice, we first fixed a

value of l, that is, we fixed the additive constant in ϕb. Then, it is
equivalent to impose a boundary condition for µ/Q0 − Φ̂c − ϕc.
Here, we chose to impose a value for this combination at r = 0,

µ/Q0 − Φ̂c(0) − ϕc(0) . (D.4)

The effective mass Meff is the sum of the baryonic mass Mb
and the integrated ghost condensate density ρc which depends
on the combination µ/Q0 − ϕ − Φ̂, see Eq. (2). In turn, Eq. (C.5)
allows to calculate the derivative of this combination from Meff .
One can use this to derive a recursion formula for Meff by equat-
ing two different expressions for µ/Q0 − ϕ − Φ̂.

In order to get µ/Q0 − ϕ − Φ̂ from the derivatives from
Eq. (C.5), one must integrate once,

µ/Q0 − ϕ(r) − Φ̂(r) = µ/Q0 − ϕb(r) − Φ̂b(r) − ϕc(0) − Φ̂c(0)

−

∫ r

0
dr′(ϕ′(r′) + Φ̂′(r) − ϕ′b(r′) − Φ̂′b(r′)) .

(D.5)

On the right-hand side, we can plug in Eq. (C.5), that is, ϕ′+Φ̂′ =
seff(GN |Meff |/r2 +

√
a0GN |Meff |/r), and the same expression but

with Mb instead of Meff for ϕb′ + Φ̂b′ . The left-hand side is pro-
portional to the condensate density ρc. Thus, after multiplying
by r2 and integrating once more, the left-hand side is Meff . We
find,

Meff(x)
Mb

= 1 + α

∫ x

0
dx′x′2

{
pl −

1
a0rMOND

(ϕb(x′) + Φ̂b(x′))

−

∫ x′

0
dx′′

[
1

x′′2

(
Meff(x′′)

Mb
− 1

)

+
1
x′′

seff(x′′)

√
|Meff(x′′)|

Mb
− 1



 , (D.6)

where rMOND =
√

GN Mb/a0 is the MOND radius. We further
defined

x ≡
r

rMOND
, α ≡

m2

fG
r2

MOND , (D.7)

and the parameter pl encodes the boundary condition,

pl ≡
1

a0rMOND

(
µ

Q0
− ϕc(0) − Φ̂c(0)

)
. (D.8)

The subscript l indicates that the split between ϕb, Φ̂b and ϕc, Φ̂c
depends on l.

Equation (D.6) can be used as a recursion formula to itera-
tively solve for Meff . The zeroth order approximation is to forget
about the ghost condensate density, corresponding to α = 0, and
set

Meff,0 ≡ Mb . (D.9)

The first order approximation is obtained from Eq. (D.6) by
using the zeroth order approximation on the right-hand side (i.e.,
by setting Meff = Meff,0 = Mb there),

Meff,1(x) ≡ Mb

[
1 + α

∫ x

0
dx′x′2

(
pl −

1
a0rMOND

(ϕb(x′) + Φ̂b(x′))
)]

= Mb

[
1 + αx2

(
1
2

+
1
9

x (3p + 1 − 3 ln(x))
)]
, (D.10)
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where

p ≡ pl − ln
( rMOND

l

)
= pl=rMOND . (D.11)

That is, p is the boundary condition for µ/Q0 − ϕc − Φ̂c for the
choice l = rMOND.

This first order estimate can also be obtained more directly
by setting ϕ = ϕb and Φ̂ = Φ̂b in the ghost condensate den-
sity Eq. (2). The advantage of the recursion formula Eq. (D.6)
is that it is, at least conceptually, straightforward to improve on
this approximation. And it allows to analytically estimate when
the first order approximation breaks down by going to the next
higher order, see Appendix J.5.

In the first order approximation, deviations from MOND are
proportional to α. This is typically a small number for galax-
ies. To see this, first note that we typically have

√
fG/m & Mpc

(Skordis & Złosnik 2021). This is much larger than the MOND
radius of galaxies, which typically satisfies rMOND . 10 kpc.
Thus, α is typically smaller than 10−4 for galaxies,

α|galaxies =
m2

fG
r2

MOND . 10−4 � 1 . (D.12)

In contrast, for galaxy clusters, the MOND radius can be large
enough to give α = O(1).

Appendix E: Numerical solutions

In addition to the analytical approximation discussed above,
we also made use of numerical solutions. To obtain these,
we used the Julia package ‘OrdinaryDiffEq.jl‘ with the
‘AutoTsit5(Rosenbrock23())‘ method (Rackauckas & Nie 2017;
Tsitouras 2011).

We again used the splits Φ̂ = Φ̂b + Φ̂c and ϕ = ϕb + ϕc and
numerically solved for Φ̂c and ϕc. The equations of motion are

Φ̂′′c +
2Φ̂′c

r
= S (E.1)

ϕ′c
r

+ ϕ′′c
1 + F(ϕb + ϕc)

2
+ ϕ′′b

F(ϕb + ϕc) − F(ϕb)
2

(E.2)

=
S

2µ̃
(
|ϕ′b + ϕ′c|/a0

) ,
where

S ≡ m2
(
µ/Q0 − ϕb − ϕc − Φ̂b − Φ̂c

)
, (E.3)

µ̃(s) = fG
1 + 2s(1 − fG) −

√
1 + 4s(1 − fG)

2s(1 − fG)2 , (E.4)

F(ϕ) ≡
µ̃′

(
|∇ϕ|
a0

)
|∇ϕ|
a0

µ̃
(
|∇ϕ|
a0

) =
1√

1 + 4(1 − fG) |∇ϕ|a0

. (E.5)

On the right-hand side of the ϕc equation, there is in general an
additional term proportional to

4πGN fGρb

(
1

2µ̃(|ϕ′b + ϕ′c|/a0)
−

1
2µ̃(ϕ′b/a0)

)
. (E.6)

We left out this term since it vanishes for a baryonic point parti-
cle, ρb = Mbδ(x), which is what we consider here. To see that it
vanishes, we first note that it vanishes outside r = 0 because of
the factor ρb. For r → 0, we have ρb ∝ δ(r)/r2, ϕ′b ∝ 1/r, and

ϕ′c ∝ r. The behavior of ϕ′c can, for example, be read off from our
approximate analytical solution which is valid at r → 0. Thus,
we can expand µ̃((ϕb′ + ϕc′ )/a0) around ϕc′ = 0 and Eq. (E.6)
becomes proportional to

ρb
µ̃′(ϕ′b/a0)
µ̃(ϕ′b/a0)2ϕ

′
c → (1/r2)δ(r)(1/r)−3/2 · r =

√
rδ(r) = 0 , (E.7)

where we used that µ̃′(s) scales as s−3/2 at large s while µ̃(s)
becomes constant.

We used a dimensionless length variable y = r/l with l =
1 kpc. We solved the equations in terms of v and u, which are
obtained from ϕc and Φ̂c, respectively, by rescaling and absorb-
ing the constant µ/Q0,

µ/Q0 − ϕc − Φ̂c ≡ −A(u + v) , (E.8)

with A ≡ 10−7. We used the boundary conditions

u′(0) = v′(0) = 0 , (E.9)
u(0) + v(0) = const . (E.10)

The first follows from spherical symmetry, the second corre-
sponds to a choice of chemical potential for the ghost conden-
sate. When comparing the numerical solution to our analytical
approximation, the following relation is useful,

u(0) + v(0) = −A−1
√

GN Mba0(p + ln(rMOND/l)) . (E.11)

The logarithm accounts for the fact that p is defined for l =
rMOND while we used l = 1 kpc for the numerical solution. To
avoid numerical complications from the 1/r factor in the equa-
tions of motion, we did not impose these boundary conditions at
r = 0 but at r = 10−5 kpc, corresponding to y = 10−5.

Appendix F: Oscillations, m2- fG-degeneracy

Fig. F.1. Total acceleration atot relative to the MOND-like acceleration
ab +

√
a0ab for a galaxy with Mb = 2 × 1010 M� for different model

parameters m2 and fG but with the same boundary condition imposed at
r = 0. This boundary condition is chosen such that the first maximum
of atot/(ab +

√
a0ab) is 1.1 for m = 1 Mpc−1 and fG = 0.6. This illus-

trates that the total acceleration begins to oscillate at large radii. It also
illustrates that the total acceleration depends only on the combination
m2/ fG but not on m2 and fG individually.

Above, we saw that the effective mass Meff – and thus
also the acceleration – drops to zero at a finite radius.
Beyond this radius, the acceleration begins to oscillate

A100, page 10 of 18



Mistele, T., et al.: A&A 676, A100 (2023)

(Skordis & Złosnik 2021; Arkani-Hamed et al. 2007),
see for example Fig. F.1. As discussed above, this oscilla-
tory regime is potentially unstable since it involved negative
energy densities and even negative masses. In this Appendix,
we ignore this, keeping in mind that the oscillations might not
be physical.

The oscillations depend strongly on the combination m2/ fG
which multiplies the condensate density. This is illustrated in
Fig. F.1 which shows multiple solutions with the same bound-
ary condition and the same mass Mb but different values of the
parameter m2/ fG.

Indeed, in spherical symmetry, the total acceleration in the
AeST model depends not on m and fG separately but only on the
combination m2/ fG. This is also illustrated in Fig. F.1 and can be
understood from the integro-differential equation Eq. (C.5) that
determines the total acceleration. Crucially, Eq. (C.5) depends
only on the sum Φ̂ + ϕ but not on Φ̂ and ϕ separately.

Appendix G: Maximum radius of MOND-like
behavior, optimal boundary conditions, relation
to maximum of Meff

The AeST model deviates from MOND at large radii. Here, we
discuss quantitatively at which radii these deviations occur and
how large they are.

First, we point out that deviations from MOND are
inevitable. By this we mean that, for given model parameters
and a given baryonic mass Mb, one cannot push the deviations to
arbitrarily large radii by judiciously adjusting the boundary con-
dition. This can be seen by considering the effective mass Meff . If
deviations from MOND are small, the zeroth order approxima-
tion Meff,0 = Mb should be close to our first order approximation
Meff,1,

Meff,1(r)
Mb

= 1 + αx2
(

1
2

+
1
9

x (3 p + 1 − 3 ln(x))
)
, (G.1)

where, again, p parametrizes the boundary condition, x =
r/rMOND, and α = m2r2

MOND/ fG. The general form of this func-
tion is that it approaches one for r → 0, has a maximum at some
finite radius, and then drops to zero (see e.g., Fig. G.1). This def-
initely deviates from the zeroth order approximation (i.e., from
MOND) when it drops to zero. And we can obviously make the
radius where this happens arbitrarily large by making the bound-
ary condition p arbitrarily large. So one might wonder whether
we can avoid deviations from MOND by just making p arbitrar-
ily large. But this is not possible because the larger p is, the more
Meff deviates from MOND at its maximum. So there must be a
finite optimal boundary condition p. For this optimal boundary
condition, the radius up to which deviations from MOND stay
small is maximized. We refer to this radius as rmax.

More concretely, we considered the ratio of the acceleration
aϕ̃ and its value without deviations from MOND, that is, we
considered aϕ̃/

√
a0ab. If one allows this ratio to deviate from

MOND by at most a fraction δ,∣∣∣∣∣∣ aϕ̃(r)
√

a0ab(r)
− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣sign(Meff(r))

√
|Meff(r)|

Mb
− 1

∣∣∣∣∣∣∣∣ !
< δ . (G.2)

That is, if one allows
√

Meff/Mb to deviate from 1 by at most a
fraction δ. Then, there is an optimal boundary condition p that
allows this condition to be fulfilled up to a maximum possible
radius rmax.

Fig. G.1. Total acceleration atot relative to the MOND-like accelera-
tion ab +

√
a0ab for numerical (solid lines) and analytical (dotted lines)

solutions for various boundary conditions for a galaxy with Mb =
2 × 1010 M� and fG/m2 = 0.99 Mpc2. The boundary conditions are
chosen such that the maxima of atot/(ab +

√
a0ab) for the numerical

solutions are 1 + δtot = 1.01 (green), 1.05 (red), and 1.10 (blue). For
each solution, we indicate the region where the condensate density of
the numerical solution is negative with gray line colors.

As we show in Appendix J.3, this optimal boundary condi-
tion is that for which

√
Meff/Mb = aϕ̃/

√
a0ab has the value 1 + δ

at its maximum. We refer to this radius where aϕ̃ reaches its max-
imum as rmaxratio. We illustrate the meaning of the quantities rmax,
rmaxratio, and δ in Fig. 1.

Instead of aϕ̃, we can also consider the total acceleration
atot = aϕ̃ + aΦ̃. This gives an analogous result: If we allow the
total acceleration atot to deviate from MOND by at most a frac-
tion δtot, then the optimal boundary condition is that for which
atot/(ab +

√
a0ab) has the value 1 + δtot at its maximum.

Strictly speaking, the optimal boundary conditions for
aϕ̃/
√

a0ab and atot/(ab+
√

a0ab) differ. At least for galaxies, how-
ever, the optimal boundary conditions are almost identical for
both cases. Moreover, the maximizing radius and the value at this
maximum are almost identical. This is shown in Appendix J.2.
Thus, for our purposes, it does not matter much whether we con-
sider the optimal boundary condition for aϕ̃ or for atot.

In Fig. G.2 we show the relation between the maximum
allowed deviation from MOND δ and the maximum radius rmax
up to which this condition can be fulfilled. For the numerical
solutions, we found rmax by maximizing the radius where a solu-
tion first deviates by more than a fraction δ from MOND using
the Julia package ‘Optim.jl‘ (Mogensen & Riseth 2018).

As discussed above, for the optimal boundary conditions, the
ratio aϕ̃/

√
a0ab has the value 1 + δ at its first maximum. The

radius rmaxratio where this maximum occurs is closely related
to the radius rmax. This is illustrated in Fig G.3 which shows
rmaxratio as a function of δ. This is very similar to Fig. G.2 just
with the values on the y-axis a bit larger. In particular, rmaxratio
corresponds to aϕ̃/

√
a0ab = 1 + δ, while rmax corresponds to

aϕ̃/
√

a0ab = 1 − δ.
In Appendix J.2 and Appendix J.4, we give an analytical esti-

mate for the relation between δ, rmax, and rmaxratio. For galaxies,
a good approximation is

rmaxratio

rMOND
≈

9 (1 + δ)2 − 1
r2

MOND m2/ fG

1/3

, rmax ≈ 1.53 rmaxratio . (G.3)
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Fig. G.2. Radius rmax up to which the acceleration aϕ̃ =
√

a0ab
√

Meff/Mb can, at best, stay within a fraction δ of the MOND-like
acceleration

√
a0ab as a function of δ. This corresponds to the radius

where aϕ̃/
√

a0ab = 1− δ for the optimal boundary condition. This is for
fG/m2 = 0.99 Mpc2. We show the result for both analytical (solid lines)
and analytical (dotted lines) solutions and for various baryonic masses
Mb. Results for the analytical approximation are shown only where our
estimate Eq. (J.36) says that the approximation is better than q = 10%.
For the analytical solution we further assume rmax = 1.53 rmaxratio.

Fig. G.3. Radius rmaxratio where the first maximum of the ratio aϕ̃/
√

a0ab
occurs for boundary conditions where this maximum deviates from
MOND by a fraction δ. These boundary conditions are the optimal
boundary conditions given a maximum allowed deviation δ of aϕ̃ from
MOND. This is for fG/m2 = 0.99 Mpc2. We show the result for both
analytical (solid lines) and analytical (dotted lines) solutions and for
various baryonic masses Mb. Results for the analytical approximation
are shown only where our estimate Eq. (J.36) says that the approxima-
tion is better than q = 10%.

Thus, where this approximation is valid, the only difference
between Fig. G.3 and Fig. G.2 is a factor 1.53 in the y-axis
values.

Our estimate for rmax can be compared to a related esti-
mate from Skordis & Złosnik (2021). There, the authors estimate
that the AeST model acceleration is MOND-like up to a critical
radius rc,

rc

rMOND
∼

 1
m2 r2

MOND

1/3

. (G.4)

This has the same scaling in rMOND and m as our estimate. How-
ever, our estimate improves on this in a few ways. First, the m2

factor in rc should be m2/ fG. Otherwise, the estimate does not

correctly take into account the difference between GN and Ĝ.
Second, our version comes with worked out prefactors, includ-
ing a parameter that controls how big deviations actually are.

We emphasize again that the maximum radius rmax – or the
critical radius rc – corresponds to choosing boundary conditions
that are optimal for reproducing MOND (given an allowed devi-
ation δ). Galaxies are not guaranteed to reproduce MOND up to
that radius. In general, galaxies will end up with boundary con-
ditions different from the optimal one and deviate from MOND
already at smaller radii.

In Fig. G.2 and Fig. G.3, we show our analytical approxi-
mation only where we analytically estimate that it deviates by
at most q = 10% from the full solution. This validity esti-
mate works by going to the next-higher order in our method
for approximating Meff and then comparing to our first-order
approximation, see Appendix J.5. Essentially, our approximation
is valid for small deviations from MOND δ, but not for larger
ones, as can already be guessed from Fig. G.1.

From Fig. G.2 and Fig. G.3 we see that more massive galax-
ies can remain close to MOND for longer than less massive
galaxies. However, in the context of MOND, accelerations are
often more important than radii. Thus, in Fig. 2, we show the
minimum acceleration ab,min = GN Mb/r2

max corresponding to the
maximum radius rmax. We see that the trend is now inverted due
to the additional factor of Mb in ab. Less massive galaxies can
have MOND-like behavior down to smaller accelerations than
more massive galaxies.

Appendix H: Stacking for weak lensing

In the weak-lensing analysis of Brouwer et al. (2021), the cen-
tral quantity is the stacked excess surface density (ESD) profile
∆Σstacked. Stacking here means taking a weighted average over
the galaxy sample. More specifically,

∆Σstacked =
ΣiWi

(
1

1+µ
εt,iΣcrit,i

)
ΣiWi

, (H.1)

where the Wi are weights, Σcrit is the critical surface density, εt is
the ellipticity, and the factor 1 + µ calibrates the shear estimates.
The ellipticity εt of a galaxy is the sum of its intrinsic elliptic-
ity ε int

t and the tangential shear γt caused by weak lensing. The
intrinsic ellipticities average to zero in a large sample, so that
∆Σstacked measures the tangential shear γt. For an individual lens
and up to the calibration factor 1 + µ, the combination γtΣcrit is
given by the ESD ∆Σ,

∆Σ(R) =
2π

∫ R
0 dR′Σ(R′)

πR2 − Σ(R) , (H.2)

where Σ(R) is the surface density corresponding to the lensing
mass Mlens. Thus, for a galaxy sample with known surface den-
sities, we can calculate ∆Σstacked by simply averaging the indi-
vidual ESD profiles of each galaxy,

∆Σstacked =
ΣiWi∆Σi

ΣiWi
. (H.3)

The stacked ESD profile is linear in the surface densities Σi.
These surface densities are calculated linearly from the density
ρlens that produces the lensing mass Mlens. This lensing mass is
defined by Φ′(r) = GN Mlens/r2. In our case,

ρlens(r) =
1

4πGN r2 ∂r

(
r2∂r(Φ̂ + ϕ)

)
. (H.4)
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Thus, the stacked ESD profile is linear in Φ̂ + ϕ. As a conse-
quence, the total acceleration atot inferred from the stacked ESD
profile is just the weighted average of the total accelerations atot,i
of each stacked galaxy,

atot,stacked(R) =
ΣiWi atot,i(R)

ΣiWi
. (H.5)

In order to calculate a stacked RAR, we should not stack at a
fixed position R but at a fixed acceleration ab = GN Mb/R2. So
we should instead use

atot,stacked(ab) =

ΣiWi atot,i

(√
GN Mb,i

ab

)
ΣiWi

. (H.6)

For a fixed baryonic mass Mb, stacking in position space and
acceleration space is equivalent.

We now illustrate how a stacked weak-lensing RAR in the
AeST model might look like. For simplicity, we assume that all
weights Wi are the same and we further assume that all galax-
ies have the same baryonic mass Mb. Essentially, we consider
stacking a sample of galaxies that differ only in their boundary
conditions. Then, we have

atot,stacked(R) = N−1 Σi atot,i(R) , (H.7)

where N is the number of galaxies in the sample.
One can also consider a large number of galaxies with

boundary conditions p distributed uniformly in an interval
[p1, p2]. Then, we can write

atot,stacked(R) =
1

p2 − p1

∫ p2

p1

dp atot,p(R) . (H.8)

As long as all accelerations atot,p(R) point in the usual direction,
that is, as long as Meff is positive, this integral can be done ana-
lytically for our first order analytical approximation,

atot,stacked(R)
∣∣∣
Meff>0 = ab

Meff(x, p̄)
Mb

+

√
a0ab

p2 − p1

2
αx3

( Meff(x, p2)
Mb

)3/2

−

(
Meff(x, p1)

Mb

)3/2 , (H.9)

where x = r/rMOND, p̄ = (p1 + p2)/2, and Meff(x, p) is our first
order analytical approximation Eq. (D.10).

Appendix I: Higher-order terms in condensate
density

The ghost condensate density from Eq. (2) is linear in the
fields ϕ and Φ̂. In contrast, for their cosmological calcula-
tions, Skordis & Złosnik (2021) used a ghost condensate density
including nonlinear corrections. Here, we discuss whether using
the linearized form around galaxies is valid and explain our deci-
sion to do so.

In the full action, not assuming the quasi-static weak-field
limit, the condensate density corresponds to a term

K(Q) = K2(Q − Q0)2 , (I.1)

where Q = Aµ∇µφ is a scalar combination of the normalized
vector field Aµ and the scalar field φ. In the quasi-static weak-
field limit, φ = Q0 · t + ϕ. The constant K2 is related to the mass
parameter m by m =

√
2K2/(2 − KB)Q0.

Fig. I.1. Cosmological ghost condensate density ρ as a function of the
scale factor a relative to its density ρ0 today, at a = 1, for various values
of the combination Q0/Z0. This is for m = 1 Mpc−1, KB = 0.1, H0 =
70 km s−1 Mpc−1, and Ω0 = 0.25. The ghost condensate follows a dust-
like evolution only at late times. Larger values of m allow for dust-like
evolution even at a = 10−4 but are in conflict with having MOND-like
behavior around galaxies.

Our expression for the ghost condensate Eq. (2) is linear
because the function K(Q) is quadratic. Indeed, in the quasi-
static weak-field limit,

Q − Q0 ≈ Q0 ·

(
ϕ̇

Q0
− ϕ − Φ̂

)
. (I.2)

However, a quadratic function K(Q) cannot simultaneously
satisfy cosmological constraints and support a MOND-like
regime in galaxies (Skordis & Złosnik 2021). In particular, cos-
mological observations require that the ghost condensate’s equa-
tion of state w satisfies w . 0.02 at a scale factor a = 10−4

(Ilić et al. 2021). But if we assume m2/ fG . 1/Mpc in order
to have a MOND-like phenomenology around galaxies, w is too
large. Indeed, using 0 < KB < 2 and fG < 1, (Skordis & Złosnik
2021)

w ≈
3H2

0Ω0

2(2 − KB) fG(m2/ fG)a3 & 10−8a−3 , (I.3)

where H0 is the Hubble constant and Ω0 is the matter density
parameter today. This is illustrated in Fig. I.1 which shows the
cosmological ghost condensate density as a function of the scale
factor a for m = 1 Mpc−1 (see the Q0/Z0 = 0 line, the param-
eter Z0 is discussed below). We see that a dust-like evolution is
possible at late times but not around a ∼ 10−4.

To avoid this problem, Skordis & Złosnik (2021) introduced
two alternative forms of K(Q),

Kexp(Q) = K2Z
2
0

(
eZ

2
− 1

)
, (I.4)

Kcosh(Q) = 2K2Z
2
0 (cosh(Z) − 1) , (I.5)

whereZ0 is a constant and

Z ≡
Q − Q0

Z0
. (I.6)

These suppress the equation of state at early times where Z is
large and reduce to the quadratic K(Q) at smallZ.

In our galaxy-scale calculations above, we assumed the
quadratic form ofK(Q). This is justified only ifZ is sufficiently
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Fig. I.2. Equation of state at a = 10−4 as a function of Q0/Z0 for the
exponential K(Q) function for various masses m. This is for KB = 0.1,
H0 = 70 km s−1 Mpc−1, and Ω0 = 0.25. The dotted gray line shows the
upper bound from Ilić et al. (2021). We note that m2 is the prefactor
of K(Q). Thus, both the density and the pressure are proportional to m2

and this prefactor cancels in w. The dependence on m shown here comes
from the constraint that the density parameter today is Ω0.

Fig. I.3. Equation of state at as a function of the scale factor a for the
exponentialK(Q) function for various masses m and ratios Q0/Z0. This
is for KB = 0.1, H0 = 70 km s−1 Mpc−1, and Ω0 = 0.25. The dotted gray
line shows the upper bound at a = 10−4 from Ilić et al. (2021).

small. To see whether or not this is the case, we first note that a
typical value of ϕ̇/Q0 − ϕ − Φ̂ around galaxies is 10−7. Thus, a
typical value ofZ around galaxies isZ ∼ Q0

Z0
· 10−7. That is, we

can use the quadratic K(Q) as long as

Q0

Z0
. 107 . (I.7)

Interestingly, this condition is not satisfied, or only barely
satisfied, for the explicit cosmological perturbation calculations
in Skordis & Złosnik (2021). In particular, Skordis & Złosnik
(2021) used Q0/Z0 = 108 for their example calculation using
Kcosh and Q0/Z0 = 1013 for Kexp.

We nevertheless assume the quadratic form around galaxies
for the following reasons. First, this seems to be what the authors
of the model had in mind. After all, they use the quadratic form
of K(Q) when deriving the action for the quasi-static weak-field
limit (Skordis & Złosnik 2021).

Second, large values of Q0/Z0 do not seem to be required in
order to satisfy cosmological constraints. Indeed, the constraint
w . 0.02 at a = 10−4 can easily be satisfied with a much smaller

value of Q0/Z0. This is illustrated for Kexp in Fig. I.2 which
shows that Q0/Z0 = O(1) is sufficient.

Even if w satisfies w . 0.02 at a = 10−4, it can be larger at
later times and potentially violate observational constraints that
apply at these later times. Indeed, w(a) is not a monotonous func-
tion, as is illustrated in Fig. I.3. Its maximum is set by Q0/Z0 and
m controls at which scale factor a this maximum occurs. Still, we
see from Fig. I.3 that Q0/Z0 = O(10) is sufficient for w to satisfy
w . 0.02 even at later times, thus easily satisfying the constraints
at these times from Ilić et al. (2021). That is, these constraints
can easily be satisfied with Q0/Z0 � 107 which allows using
the quadratic K(Q) around galaxies. We find a similar result for
Kcosh.4

A third reason is that, if the nonlinearities of Kexp or Kcosh
were to be important around galaxies, then either many galax-
ies would deviate very strongly from MOND or there would
be almost no deviations from MOND at all. Both cases do not
require a thorough investigation here. Strong deviations from
MOND are ruled out by observations while pure-MOND pre-
dictions are already discussed elsewhere.

It remains to explain why Kexp and Kcosh have the effects
described in the previous paragraph. We first consider Kexp and
Kcosh with the parameter m having roughly the value we assumed
above for the quadratic function K(Q), that is, m ∼ 1 Mpc−1.
Then, as soon as nonlinearities become important, the conden-
sate density is enhanced exponentially compared to the case of a
quadratic K(Q). Thus, deviations from MOND set in exponen-
tially earlier, that is, the radius rmax is exponentially smaller. For
example, the oscillations discussed in Appendix F start at expo-
nentially smaller radii. This is in conflict with, for example, the
observed RAR which is MOND-like as discussed above.

One way out would be to make the prefactor m2 of Kexp
exponentially smaller to keep the ghost condensate from becom-
ing large. Indeed, by choosing m2 sufficiently small, we can get
rid of any significant deviations from MOND around galaxies.
The predictions of the AeST model in this case are just those of
MOND so do not require a special investigation.

A middle ground would be to make m2 exponentially
smaller, but by just the right amount so that deviations from
MOND set in on roughly galactic scales. However, the maximum
radius rmax would still be exponentially sensitive to the galactic
potential µ/Q0 − ϕ − Φ̂. Thus, for galaxies with slightly larger
µ/Q0 − ϕ− Φ̂, deviations from MOND still set in at an exponen-
tially smaller radius compared to the quadratic K(Q). Galaxies
with slightly smaller µ/Q0 − ϕ − Φ̂ would perfectly follow the
MOND predictions up to exponentially large radii. Thus, a sig-
nificant fraction of galaxies should still deviate strongly from
MOND which is not what is observed.

Appendix J: A few useful properties of Meff,1(r)
In this appendix, we consider a few properties of the analytical
first order approximation Meff,1 from Eq. (D.10),

Meff,1(r) = Mb

[
1 + αx2

(
1
2

+
1
9

x (3 p + 1 − 3 ln(x))
)]
. (J.1)

We sometimes write Meff instead of Meff,1 for brevity.

4 Of course, in contrast to Skordis & Złosnik (2021), we did not run
a full cosmological perturbations calculation. We only considered the
constraint on w from the background cosmology. It is possible that new
constraints arise from the CMB or other observations pertaining to cos-
mological perturbation theory. Here, we assume that this is not the case.
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J.1. Increasing functions of boundary condition

We first show that both aϕ̃/
√

a0ab and atot/(ab +
√

a0ab) as well
as their spatial derivatives are increasing functions of the bound-
ary condition p. At least as long as Meff is positive. This technical
result will be useful in Appendix J.3.

We first consider aϕ̃/
√

a0ab =
√

Meff/Mb as a function of p.
Both Meff(r) and M′eff

(r) are increasing functions of the bound-
ary condition, that is, of p, for all r. This follows from α and r
being positive. We then consider

√
Meff(r) and ∂r

√
Meff(r) for

radii where Meff is positive. In this case,
√

Meff(r) is an increas-
ing function of p everywhere because Meff is,

∂p
√

Meff(r) =
∂pMeff

2
√

Meff(r)
> 0 . (J.2)

The same holds for the spatial derivative ∂r
√

Meff(r) but it is a
bit harder to see. We find

∂p∂x
√

Meff(r)/Mb

=
3αx2

√
2

9 + αx2( 9
2 + x(3p + 1 − 3 ln(x))) + 9 + αx2((6 − 9

2 ) + x)
(18Meff(r)/Mb)3/2

(J.3)

>
3αx2

√
2

9Meff(r)/Mb

(18Meff(r)/Mb)3/2 > 0 ,

which follows because r and Meff are positive.
We consider next, again assuming Meff > 0, the function

aϕ̃ + aΦ̃

ab +
√

a0ab
=

Meff

Mb

1
x +

√
Meff

Mb

1
x + 1

≡
H/x +

√
H

1/x + 1
, (J.4)

where we defined H = Meff/Mb. Since Meff is an increasing
function of the boundary condition p, the same holds for this
function. The slope of this function with respect to x is also an
increasing function of p, but this is again a bit harder to see. We
have

∂p∂x
H/x +

√
H

1/x + 1

= x2α
2xH(4 + 3x) + 4(3 + 2x)H3/2 − x2(1 + x)∂xH

12(1 + x)2H3/2 , (J.5)

where we already inserted the explicit expressions for ∂pH and
∂p∂xH due to their simple form. It now suffices to show positivity
of the following expression,

2H(4 + 3x) − x(1 + x)∂xH

= 2H(4 + 3x) − x2(1 + x)α(1 + px − x ln(x)) . (J.6)

In general, this can be negative. However, here it cannot be due
to our assumption that Meff is positive. To see this, we first use
the definition of H to rewrite x(p − ln(x)) in terms of H,

x(p − ln(x)) = −
3
2
−

x
3

+
3
αx2 (H − 1) . (J.7)

With this, we find

2H(4 + 3x) − x(1 + x)∂xH

= H(5 + 3x) +
1
6

(1 + x)(18 + 3x2α + 2x3α) > 0 , (J.8)

which completes the proof.

J.2. Maximum

We first consider the maximum of aϕ̃(r)/
√

a0ab(r) =
√

Meff(r)/Mb. The maximum of both Meff(r) and
√

Meff(r) is
determined by M′eff

(r) = 0. This condition can be written as

p = ln(x) −
1
x
, (J.9)

which can be solved in terms of the Lambert W function,

x =
1

W(e−p)
. (J.10)

Using this condition gives further for the maximum of√
Meff/Mb with value 1 + δ,

x2

6
+

x3

9
=

(1 + δ)2 − 1
α

. (J.11)

This can be solved exactly but the resulting expression is not par-
ticularly illuminating. The size of the right-hand side determines
whether the x2 or the x3 term dominates. For large values, the
x3 term dominates, for small values the x2 term dominates. For
large right-hand sides, we have for the maximum

x =

(
9

(1 + δ)2 − 1
α

)1/3

−
1
2

+ O

( α

(1 + δ)2 − 1

)1/3 . (J.12)

The boundary condition needed to obtain such a maximum is

p =
1
3

ln
(
9

(1 + δ)2 − 1
α

)
+ O

( α

(1 + δ)2 − 1

)1/3 . (J.13)

We consider next the maximum of atot/(ab +
√

a0ab), that is,
the maximum of the function

Meff

Mb

1
x +

√
Meff

Mb

1
x + 1

≡
H/x +

√
H

1/x + 1
, (J.14)

assuming Meff > 0. The maximum of this function is both at
a similar location and has a similar value as that of

√
Meff – at

least for galaxies. We first show that the maximum is at a similar
location. To this end, we set the derivative with respect to x to
zero, plug in x + δx where x is the maximizer of

√
Meff , expand

to lowest order in δx, use H′(x) = 0, and solve for δx. This gives

δx

x
=

(
2x

1 + x
−

9(1 + x)2(2 + δ)(2 + x + 2δ)
x(3 + 2x)(1 + δ)2

)−1

, (J.15)

where we have additionally used Eq. (J.11), H(x) = (1 + δ)2,
H′′(x) = −(1+x)α, and we have eliminated α by using Eq. (J.11),
giving α = ((1 + δ)2 − 1)/(x2/6 + x3/9).

The simplest way to understand this expression is to plot it
as a function of x for a number of values of δ. For δ � 1, we
have that |δx/x| is always smaller than 2.5%. For δ = O(1), it can
become a bit larger. For example, up to δ = 1.5, we have that
|δx/x| is always smaller than 5%. But even for extremely large
values of δ, we have that |δx/x| is always smaller than 14.5%.
Thus, the maximum of atot/(ab +

√
a0ab) is indeed at a similar

location as that of aϕ̃/
√

a0ab.
Now we can evaluate the maximum value of the function

Eq. (J.14), assuming that the maximizer is close to the one of√
Meff/Mb,

Meff

Mb

1
x +

√
Meff

Mb

1
x + 1

≈
(1 + δ)2 + x(1 + δ)

1 + x
. (J.16)
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We can write this as

1 + δtot ≈
(1 + δϕ̃)2 + x(1 + δϕ̃)

1 + x
= (1 + δϕ̃)

(
1 +

δϕ̃

1 + x

)
, (J.17)

where 1 + δtot is the maximum value of Eq. (J.14) and 1 + δϕ̃
is the maximum of aϕ̃/

√
a0ab. We consider first small δϕ̃. Then,

the factors relative to MOND are approximately the same in both
cases, that is, 1+δtot ≈ 1+δϕ̃. (But we note: δtot and δϕ themselves
might differ by up to a factor 2 for small x). When δϕ̃ is not small,
x is very large, see Eq. (J.11). At least for galaxies, which have
α � 1. Thus, the factors relative to MOND are again approxi-
mately the same in both cases – unless δϕ̃ is very large. But for
such large δ, our approximation is anyway no longer valid, see
Appendix J.5.

J.3. Optimal boundary condition

We consider the ratio

aϕ̃
√

a0ab
=

√
Meff

Mb
, (J.18)

and require that it stays between 1 + δ and 1 − δ for some pos-
itive δ. One may wonder what the boundary condition is that
allows this requirement to be fulfilled up to the maximum possi-
ble radius rmax. We refer to this as the optimal boundary condi-
tion. Here, we show that it is the boundary condition for which√

Meff/Mb has the value 1 + δ at its maximum, which we dis-
cussed in Appendix J.2.

To this end, we consider this solution for which
√

Meff/Mb
has the maximum value 1 + δ at some radius r1. This solution
will have the value 1 − δ at some radius r2 > r1 since Meff drops
to zero after the maximum. We refer to this solution’s boundary
condition p as p1.

Here, we consider Meff > 0. When Meff < 0, the gravitational
force in the AeST model points into the opposite direction from
that in MOND. We are not interested in this regime here. Thus,
we assume δ < 1 which implies Meff > 0.

Any solution with a boundary condition p larger than p1
has a larger value

√
Meff everywhere (see Appendix J.1). This

implies that such solutions must have
√

Meff/Mb > 1 + δ at
r = r1. Thus, boundary conditions p larger than p1 cannot be
optimal.

We then consider solutions with boundary condition p
smaller than p1. Such solutions have a smaller value

√
Meff and

slope ∂r
√

Meff everywhere (see Appendix J.1). Thus, these solu-
tions reach their maximum earlier than r1 and this maximum has
a value smaller than 1 + δ. Starting at this lower maximum, such
solutions then go to zero faster (since their slope is more nega-
tive). Thus, these solutions reach

√
Meff/Mb = 1 − δ earlier than

r2. Thus, smaller boundary conditions also cannot be optimal.
It follows that the optimal boundary condition is that which

gives
√

Meff/Mb = 1 + δ at the maximum of Meff . That is, we
have p = p1.

The preceding argument implicitly considered negative con-
densate densities by considering radii beyond the radius where
Meff is maximal. One may wonder whether anything changes
when restricting solutions to have positive densities. But this
is not the case, at least as long as we just cut off the solutions
when the density reaches zero and do not continue them with
something else (such as a Navarro-Frenk-White halo). The above
argument can be straightforwardly adapted to this case.

Instead of aϕ̃/
√

a0ab we could also consider the total accel-
eration relative to MOND. That is,

aϕ̃ + aΦ̃

ab +
√

a0ab
=

Meff

Mb

1
x +

√
Meff

Mb

1
x + 1

. (J.19)

The argument above can be adapted to this case as well. That is,
the optimal boundary boundary condition is that for which this
total acceleration ratio has the maximum value 1 + δ.

The optimal boundary conditions for aϕ̃ are, in general, not
the same as those for the total acceleration aϕ̃ + aΦ̃. However, in
practice, they are very similar and give very similar deviations
from MOND at very similar maximum radius. This follows from
the properties of the maximum discussed in Appendix J.2.

J.4. Relation between rmax and rmaxratio

Here, we consider a solution that is optimal for some δ. As dis-
cussed above and as illustrated in Fig. 1, the radius rmaxratio is
where the ratio aϕ̃/

√
a0ab has its maximum value, namely 1 + δ,

and rmax is the radius where this ratio drops to 1 − δ. Here, we
consider the relation between these two radii. We argue that, usu-
ally, rmax is larger than rmaxratio by a fixed factor 1.53 for small
δ.

Based on numerical examples, we first guess a factor around
1.5. Then, we calculate first-order corrections to this factor 1.5
and find that corrections are, in a certain regime, small. This con-
firms the validity of our initial guess. In addition, we find that the
first-order corrections are universal and give a factor 1.53.

To find rmax, we must solve
√

Meff/Mb = 1 − δ. That is,

1 + αx2
(

1
2

+
1
9

x(3p + 1 − 3 ln(x))
)

= (1 − δ)2 . (J.20)

where x = rmax/rMOND. We write

x = f x0(1 + ε) , (J.21)

where x0 is the radius where this equation is satisfied with (1+δ)
instead of (1 − δ) on the right-hand side, that is to say it is the
radius where Meff is maximal, that is, x0 = rmaxratio/rMOND. We
later set f = 3/2 and let ε parametrize deviations from a factor
1.5 between rmax and rmaxratio, that is, later we find f (1 + ε) ≈
1.53.

We plug this expression for x back into the equation deter-
mining x, expand in ε, and solve for ε. Then, we eliminate first
p and then α using the two conditions we know from x0 being a
maximum, namely Eq. (J.9) and Eq. (J.11). This gives

ε = −
1
3

+
(2 − δ)(3 + 2x0) + 3 f 2(2 + δ) + 2 f 3x0(2 + δ)

18 f 2(2 + δ)( f − 1 + f x0 ln( f ))
. (J.22)

We now consider f = 3/2 and check whether or not ε is actually
small. For large x0, we find

ε f =3/2 =
70 + 19δ − 81(2 + δ) ln(3/2)

243(2 + δ) ln(3/2)
+ O(1/x0) . (J.23)

The maximum radius x0 is large as long as δ/α � 1,
see Appendix J.2. For galaxies, we typically have α . 10−4

(see Appendix G). Thus, this condition is fulfilled unless δ
is extremely large. For such large δ, the first order analytical
approximation for Meff is anyway no longer valid, as we show
in Appendix J.5. Thus, for galaxies, the large-x0 result is typi-
cally valid.
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If, in addition, we have δ � 1, we find

ε f =3/2 = −
1
3

+
35

243 ln(3/2)
+ O(δ) + O(1/x0) . (J.24)

Thus,

rmax

rmaxratio
=

3
2

(1 + ε f =3/2) ≈ 1 +
35

162 ln(3/2)
≈ 1.53 . (J.25)

J.5. Validity of approximation

We now consider the validity of our first order approximation
Meff,1 for Meff from Eq. (D.10). Figure G.1 and other plots sug-
gest that it is often a reasonable approximation but also that it
becomes worse for larger deviations from MOND δ. Here, we
estimate analytically when this approximation is valid.

To this end, we calculate the 2nd order approximation to Meff

and check when the first and second orders deviate from each
other. To facilitate a quantitative analytical estimate, we do not
calculate the 2nd order approximation exactly. We make addi-
tional approximations and assumptions. The result should still
be a reasonable estimate of when the first order approximation is
valid.

The 2nd order approximation is obtained by plugging the
first order approximation into the right-hand side of Eq. (D.6),

Meff,2(x)
Mb

=
Meff,1(x)

Mb
− α

∫ x

0
dx′x′2

∫ x′

0
dx′′

[
1

x′′2

(
Meff,1(x′′)

Mb
− 1

)

+
1
x′′

seff,1(x′′)

√
|Meff,1(x′′)|

Mb
− 1


 , (J.26)

where the subscripts 1 and 2 refer to the first and second order
approximations, respectively.

The double integrals in this expression can be done analyti-
cally for the part linear in Meff,1. We find

Mlin
eff,2(x)

Mb
=

Meff,1(x)
Mb

−
x4α2

1800
(225 + (62 + 60p)x − 60x ln(x)) . (J.27)

Below we express radii relative to where Meff,1 has its maximum,

x̂ ≡
r

rmaxratio
≡

x
xmr

. (J.28)

We can also eliminate p by using the relation p = ln(xmr)−1/xmr.
This gives

Mlin
eff

(x̂)
Mb

≈
Meff,1(x̂)

Mb

−
x̂4x4

mrα
2

1800

(
225 − 60x̂ + 62xmr x̂

(
1 −

60
62

ln(x̂)
))
.

(J.29)

We consider x̂ between 0 and 1. The function x̂(1 − 60/62 ln(x̂))
grows from 0 to 1 in this x̂ interval. Thus, when xmr is large,
that is, when rmaxratio is large compared to rMOND, this term will
dominate, except at very small radii x̂. Otherwise, the 225 − 60x̂
term dominates.

We now consider the remaining terms in Meff,2/Mb, that
is, those with

√
Meff,1/Mb. Here, the double integrals are not

straightforward to do analytically. Therefore, we make an addi-
tional approximation and we restrict ourselves to radii r before
Meff,1 reaches its maximum, that is, we only consider r ≤
rmaxratio. Concretely, we assume that

√
Meff,1/Mb = aϕ̃,1/

√
a0ab

grows linearly from 1 at r = 0 to its maximum 1 + δ at
r = rmaxratio,

aϕ̃,1(r)
√

a0ab(r)
=

√
Meff,1(r)

Mb
= 1 + δ

r
rmaxratio

, r ≤ rmaxratio . (J.30)

From Fig. 1 we see that this underestimates Meff,1 at small radii
and then overestimates it at larger radii toward rmaxratio. This is
a rough approximation but we have verified numerically that it
captures the validity of the first order approximation reasonably
well. With this, we have

Msqrt
eff,2(x)

Mb
= −

αδ

4
x3

mr x̂
4 . (J.31)

The remaining task is to sum Mlin
eff,2 and Msqrt

eff,2 and determine
when this sum deviates from Meff,1. More specifically, we are
interested mostly in aϕ̃ so we are interested in the square root.
We parametrize the deviation by a parameter q,√

Meff,2(x̂)
Meff,1(x̂)

!
= 1 − q . (J.32)

This relation determines the radius x̂ where the 2nd order
becomes important if we want to trust the first order approxi-
mation up to a fraction q.

Unfortunately, this equation is not straightforward to solve
analytically. Thus, we make further approximations. First, we
use the linear approximation

√
Meff,1/Mb = 1 + δx̂ also in the

denominator of Eq. (J.32) and the first term in Mlin
eff,2. Second,

we neglect the x̂(1 − (60/62) ln(x̂)) term in Mlin
eff,2.

The reasoning behind the second of these approximations is
the following. As argued above, the x̂(1 − (60/62) ln(x̂)) term is
important only for large xmr. But in this case, the double-integral
contributions to Mlin

eff
are anyway small compared to Msqrt

eff
so it

does not matter. Indeed,

Mlin
eff,2 − Meff,1

Msqrt
eff,2

∣∣∣∣∣∣∣
xmr�1

≈
31
25

1
xmr

(1 + δ)2 − 1
δ

x̂
(
1 −

60
62

ln(x̂)
)
,

(J.33)

where we used α = 9((1+δ)2−1)/x3
mr which is valid for xmr � 1,

see Eq. (J.11). Since x̂ ≤ 1 and xmr � 1, this ratio is small unless
δ & xmr. Thus, for our purposes this ratio is small. We are not
interested in very large deviations from MOND δ which would
be required for δ & xmr � 1.

Equation (J.32) then becomes

−αδ4 x3
mr x̂

4 − α2

8 x̂4x4
mr

(
1 − 4

15 x̂
)

(1 + δx̂)2
!
= (1 − q)2 − 1 . (J.34)

This is still not solvable analytically. Thus, our final approxi-
mation will be to neglect the −4/15x̂ term. This is again a rough
approximation but, as mentioned above, we have verified numer-
ically that the result is reasonable. Thus, we need to solve√

1
4
αx3

mrδ +
1
8
α2x4

mr
x̂2

1 + δx̂
!
=

√
1 − (1 − q)2 . (J.35)
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We finally find for the radius rapprox up to which the first order
approximation is valid to within a fraction q,

rapprox

rmaxratio
=

1
2

(
βδ +

√
(βδ)2 + 4β

)
, (J.36)

where

β =

√
2

3

√
1 − (1 − q)2

δ2(2 + δ)

√
(3 + 2xmr)2

(3 + 2xmr)xmr + 9(2 + δ)
, (J.37)

where we used Eq. (J.11) to eliminate α.
We note that we assumed r ≤ rmaxratio when deriving this

estimate. Thus, if our expression for rapprox/rmaxratio is larger than
1, the first order approximation is valid up to at least rmaxratio but
the precise value of rapprox/rmaxratio is not meaningful.

The most important implication of our estimate is that
the first order approximation is good for small δ (except for
extremely restrictive values of q). For larger δ, the approxima-

tion is worse. Explicitly, for small δ the quantity β scales as

βδ�1 ∼
√

q/δ (J.38)

so that rapprox/rmaxratio scales as

rapprox

rmaxratio

∣∣∣∣∣
δ�1
∼

√
β ∼

( q
δ2

)1/4
. (J.39)

When δ is small, this ratio is large, so the first order approxima-
tion is valid. If we demand a better approximation (i.e., a smaller
q), the radius rapprox becomes smaller.

In the opposite limit, δ � 1,

βδ�1 ∼

√
q/δ3 or

√
q/δ4 , (J.40)

where the power 3 applies for sufficiently large xmr and
the power 4 for sufficiently small xmr. In both cases does
rapprox/rmaxratio tend to zero for large δ. So the first order approx-
imation is not valid much.
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