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ABSTRACT

We study the CLASH sample of galaxy clusters using a new deprojection method for weak grav-
itational lensing observations. This method is non-parametric, allowing us to infer mass profiles, or
equivalently circular velocities, without having to assume a specific halo profile. While this method
assumes spherical symmetry, we show that, on average, triaxiality is unlikely to significantly affect
our results. We use this method to study the total mass profiles of the CLASH clusters, as well
as the relation between their total and baryonic components: (1) We find that the implied circular
velocities are consistent with being approximately flat at large radii, akin to the rotation curves of
galaxies. (2) We infer radially resolved baryonic mass fractions, finding that these vary significantly
from cluster to cluster and depend strongly on the details of the X-ray gas mass profiles. Since the gas
mass profiles are poorly constrained at large radii, it is unclear whether the CLASH clusters reach the
cosmic baryon fraction expected in ACDM. (3) The non-parametric masses are consistent with the
stellar mass—halo mass relation expected in ACDM. (4) Galaxy clusters systematically deviate from
the Baryonic Tully-Fisher Relation (BTFR) and the Radial Acceleration Relation (RAR) defined by
galaxies, but the magnitude of the offset depends strongly on the gas mass extrapolation at large radii.
Contrary to some previous results based on hydrostatic equilibrium, we find that galaxy clusters may
fall on the same BTFR and RAR as galaxies if one adds a suitable positive baryonic mass component.

1. INTRODUCTION

Galaxy clusters are important astrophysical and cos-
mological probes. For example, in cosmological models
such as ACDM, their abundance and masses constrain
key parameters such as €2, and og. They can also con-
strain models of dark matter and modified gravity, for
example through features in their density profiles such
as the splashback radius (e.g. Diemer & Kravtsov 2014;
More et al. 2015, 2016; Adhikari et al. 2018) or through
scaling relations that connect their baryonic and dynam-
ical mass distributions (e.g. Sanders 2003; Tian et al.
2020; Eckert et al. 2022; Li et al. 2023, 2024; Famaey
et al. 2025; Kelleher & Lelli 2024).

Scaling relations also play an important role in galax-
ies. Indeed, galaxies follow tight scaling relations such
as the Baryonic Tully-Fisher Relation (BTFR, McGaugh
et al. 2000; Mistele et al. 2024a) and the Radial Accel-
eration Relation (RAR, Lelli et al. 2017; Brouwer et al.
2021; Mistele et al. 2024b). These were predicted a pri-
ori by Modified Newtonian Dynamics (MOND, Milgrom
1983a,b,c, see Famaey & Durakovic 2025 for a recent re-
view), but are not easily explained in ACDM because
they must emerge from the complex and stochastic pro-
cess of galaxy formation. However, MOND-inspired the-
ories have historically struggled to explain why galaxy
clusters do not seem to follow the same scaling relations
as galaxies (Sanders 1999, 2003). Relativistic extension
of MOND such as Aether-Scalar Tensor Theory (AeST,

Skordis & Zlosnik 2021) or Relativistic Khronon The-
ory (Blanchet & Skordis 2024) may ameliorate these is-
sues, since they predict deviations from scaling relations
such as the RAR at large masses (Mistele et al. 2023a;
Durakovic & Skordis 2024), but this has not yet been
demonstrated to work in quantitative detail.

All these different constraints require dynamical
masses of galaxy clusters. A powerful tool to measure
these is weak gravitational lensing. Indeed, unlike X-ray
and galaxy kinematics measurements, weak lensing does
not require hydrostatic or dynamical equilibrium. How-
ever, most existing weak-lensing measurements are based
on fitting weak-lensing observations to parametric pro-
files such as the Navarro-Frenk-White (NFW, Navarro
et al. 1996) profile, assuming a specific shape of the mass
profile (but see Johnston et al. 2007; Umetsu et al. 2011,
2025). An alternative is the non-parametric method from
Mistele & Durakovic (2024) which does not presume a
specific profile, allowing for less biased and more model-
independent measurements.

In the following we will use this method to infer
non-parametric mass profiles for galaxy clusters from
the Cluster Lensing and Supernova Survey with Hubble
(CLASH, Postman et al. 2012) and study their proper-
ties, including the relation between the dynamical and
baryonic mass components. In Sec. 2, we discuss the
data we use with the methods described in Sec. 3. We
present our results in Sec. 4 and after a brief discussion
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in Sec. 5 we conclude in Sec. 6.

2. DATA

We consider a subset of 20 galaxy clusters from the
CLASH project for which weak-lensing observations, pri-
marily from the Subaru Suprime-Cam, are available
(Umetsu et al. 2014). Of these, 16 were originally X-ray
selected to be massive (KT > 5keV, listed first in Ta-
ble 1) and 4 were selected for their high lensing strength.

2.1. Weak lensing data

We adopt the azimuthally-averaged reduced shear pro-
files (g4 ), cluster redshifts z;, and the corresponding crit-
ical surface densities from Umetsu et al. (2014). The
shear profiles are given as functions of angular distances,
which we convert to projected radii R assuming a flat
ACDM cosmology with Hy = 70kms *Mpc~! and
Q. = 0.27, following Umetsu et al. (2014). We adopt
this cosmology throughout this work.

The critical surface density of a given lens-source pair
is defined as,

S AnGn D(21)D(21,25) _ 4nGn
crit,ls 02 D(ZS) - 02

D(z)-8, (1)

where Gy is the Newtonian gravitational constant and
D(z), D(zs), and D(z, zs) are the angular diameter dis-
tances to the lens, to the source, and between the source
and the lens, respectively. For our weak-lensing anal-
ysis below, we need <E;ri1t7ls> and <E;r12t,ls> where (...)
denotes averaging over source galaxies (see Sec. 3.1).
Umetsu et al. (2014) provide estimates for () as well
as (3?)/(B)? from which we infer the desired quantities
using the cluster redshift z; and the assumed cosmology.
Our weak-lensing analysis makes use of the shear pro-
files in the form G4 = <g+>/<2;ilt,ls>, which we show in
Fig. 1. The shear (g;) varies as a function of projected
radius while, following Umetsu et al. (2014), (Z;ilt7ls> is
assumed to be constant within a given cluster. The un-
certainties shown in Fig. 1 are discussed in Sec. 3.3.

2.2. Baryonic mass estimate

We adopt the baryonic mass estimates from Famaey
et al. (2025). These are available for 16 out of 20 clusters
in our sample (see Table 1) to which we restrict ourselves
whenever baryonic masses are required.

Famaey et al. (2025) estimate the baryonic mass pro-
file My(r) as a sum of the dominant contribution from
the intracluster medium, Mgas(r), and further contribu-
tions from the brightest cluster galaxy (BCG) including
companions within 50kpc, M, geg+, (Burke et al. 2015)
as well as contributions from other galaxies, Mgai(r).

Since we are only interested in radii larger than a few
hundred kpc, we treat M, pcg+ as a point mass. The
galaxy contribution is given as a fraction fga of Mgas,
i.e. Mgai(r) = feal(r) - Mgas(r). Following Famaey et al.
(2025), this fraction fga1 is assumed to be the same across
all galaxy clusters when normalized to the radius rago.’

L In the following, Magg. refers to the mass within the radius
r200c Where the galaxy cluster’s average mass density drops to 200
times the critical density at the cluster’s redshift.

TABLE 1
PROPERTIES OF THE CLASH CLUSTERS WE USE AND
QUANTITIES INFERRED FROM OUR WEAK-LENSING ANALYSIS.

Name z RX,. logy M%losc‘*b logq9 M200c
Mpc Mg Mg

Abell 383 0.187 - - -
Abell 209 0.206  0.651 15.26 £0.11  15.29 +£0.12
Abell 2261 0.224  0.825 15.25+0.11  15.28 £0.12
RXJ2129 0.234 0.591* | 14.93£0.18 14.96£0.18
Abell 611 0.288 0.884 15.11+0.15 15.154+0.38
MS2137 0.313  0.227 15.05+0.08 15.07 £0.08
RXJ2248 0.348  0.904 15.14 +£0.15 15.17+0.16
MACSJ1115 0.352  0.375 15.27+0.18 15.324+0.18
MACSJ1931 0.352 — 15.27+£0.46 15.33£0.31
RXJ1532 0.363 — 14.58 £0.24  14.60 £ 0.25
MACSJ1720 0.391  0.532 15.04 £0.15 15.07+0.11
MACSJ0429 0.399  0.292 15.02+0.23  15.06 +0.24
MACSJ1206 0.440  0.930 15.17+£0.17  15.22£0.17
MACSJ0329 0.450  0.377 14.79+£0.20 14.83£0.23
RXJ1347 0.451  0.887 15.41+0.11 1544 4+0.12
MACSJO0744 0.686  0.884 15.17+£0.13  15.19£0.14
MACSJ0416 0.396  0.449 14.92+£0.09 14.94 £0.09
MACSJ1149 0.544  0.557 15.38+£0.10 15.42+0.10
MACSJO717  0.548 — 15.32+£0.08 15.35 £0.08
MACSJ0647 0.584  0.381 14.94+0.13 1497 4+0.13

NOTE. — R, denotes the radial extent of the X-ray data

used in Donahue et al. (2014). *The exception is RX J2129
where Famaey et al. (2025) redid the fit with a smaller radial
range than the RZX,. listed in Donahue et al. (2014). Miss-
ing RX,. values indicate that a baryonic mass estimate from
Famaey et al. (2025) is not available. The masses Mago. are
missing for Abell 383 due to the uptick in the non-parametric

mass profile (see Fig. 6).

(that we measure from weak gravitational lensing, see be-
low).? Values of fga typically reach O(1) at r < 0.1 Mpc
and drop to about 8% or 12% beyond r20q., depending on
how we extrapolate the gas density profiles (see below).
This simple procedure doesn’t allow precise quantitative
statements about M, but suffices for our purposes.

The dominant contribution Mg,s(r) is obtained by fit-
ting double-beta profiles to X-ray observations,

r —a r 2\ T 72
as = - 1 -
o) =0 (=) (14 ()

N
T
+ny 1+<) , (2)

Te,1

with free parameters ng, ro, o, Tc0, Bo, N1, Te,1, and 3.
We adopt the fit results from Famaey et al. (2025). Most
of these are originally from Laudato et al. (2022) based
on data from Donahue et al. (2014), but Famaey et al.
(2025) redid them for a few clusters for which the implied
gas masses were unreasonably small.

The underlying Chandra X-ray observations to which
these beta profiles were fit become noisy at large radii.
Therefore, Donahue et al. (2014) considered only data

out to a maximum radius R;X, , which is determined by

requiring at least 1500 counts of photon signal in each
radial bin. In the following, we assume that the beta

2 Specifically, Famaey et al. (2025) measure faal for MACS J1206

and adopt fga1(r) = feal 31206 (7 - T200¢,31206/7200c) for the other
clusters. Beyond the last measured data point, fga1 j1206 is as-
sumed to remain constant at the last measured value.
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F1G. 1.— The reduced shear in terms of G4 = (g+)/(X

cri

;) for the 20 CLASH clusters from Umetsu et al. (2014). The error bars include

contributions from the reduced shear (g4), the inverse critical surface density (E;}Q, and from the LSS, see Sec. 3.3.
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F1a. 2.— The gas density of Abell 209 implied by the double beta
fit from Famaey et al. (2025). The vertical dashed line indicates
RX.y, i.e. how far out this fit is reliable. We show two different
ways of extrapolating beyond R:X,.: Assuming the best-fit param-
eters to be valid even beyond R, (solid blue line) and assuming

max
a 1/7* tail (dashed red line).

profile fits are reliable up to R;,,.
yond RX . we consider two options: 1) We assume that
the best fit parameters remain valid even at large radii
where they were not well constrained by observations and
2) we assume that the beta profiles are matched to a 1/r*
tail at r = RX, .

The 1/r% tail has two motivations. If we require a
finite total gas mass, we need a gas density that asymp-

totically decays faster than 1/r3 so 1/r* is perhaps a

RX_ 3. At larger radii, be-

3 In the fits they redid, Famaey et al. (2025) did not impose the
1500 photon count requirement and so used X-ray observations
out to larger radii for some clusters. However, since this additional
data is quite noisy, it still makes sense to adopt RX,, from Donahue
et al. (2014) as an estimate of how far out to trust the beta profile
fits.
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Fic. 3.— The radius R, out to which the double beta profile
fits of the gas densities are well constrained by observations versus
the total gas mass. Circles correspond to assuming a 1/r% density
tail after RX_ . The two clear outliers, MS 2137 and MACS J0429,

max-*
are shown as gray diamonds. Crosses correspond to assuming that

the best-fit beta profiles remain valid even beyond R;X,..
natural choice. Also, 1/r? is the asymptotic behavior of
isothermal spheres in MOND (Milgrom 1984).

The 1/r* matching procedure is illustrated in Fig. 2.
Beyond R, ., we set 30 = (4 —a)/3 and 81 = 4/3 to

max’?
ensure an asymptotic 1/r% decay and we adjust ng and
ny such that the ng and n; components of pg,s are both

continuous. In practice, R, is quite small for some
clusters (see Table 1). Thus, even if 1/r* is the correct
asymptotic behavior, one may worry that R is not
yet in that asymptotic regime, so that matching to a
1/r* tail at R, may underestimate the true gas mass.
In that case one would expect our 1/r* extrapolation to
artificially induce a positive correlation between gas mass

and RX, .
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To assess this effect, the white circles in Fig. 3 show
the total gas mass implied by our 1/r* matching proce-
dure versus the radial range of the X-ray observations
RX. .. For comparison, the gray crosses in Fig. 3 corre-
spond to assuming that the best-fit beta profiles remain
valid even beyond R with the gas mass evaluated at
7 = r900c (see Sec. 4.5). We see that assuming a 1/74 tail
induces only a weak additional correlation between the
total gas mass and RX . though there are two clear out-
liers MS 2137 and MACS J0429, which have the small-
est gas masses in our sample, and two borderline cases
MACS J0329 and MACS J1115, with the 3rd and 4th
lowest gas masses. Quantitatively, with our 1/r* extrap-
olation, Pearson’s r is 0.82 for the full sample and drops
to 0.43 with the two outliers and the two borderline cases
removed. With the best-fit extrapolation, Pearson’s r
is 0.66. This suggests that, if 1/r* is indeed the cor-
rect asymptotic behavior, it is overall not unreasonable
to match to a 1/r* tail at Rz, . The gas masses for
the two outliers are, however, likely to be significantly
underestimated and we consider them separately below.
The gas masses of clusters with RX__ similar to the two
borderline cases may also be somewhat underestimated
but we do not treat them separately.

Recently, the XMM Cluster Outskirts Project (X-
COP, Eckert et al. 2017; Ghirardini et al. 2019) has con-
strained the gas densities of 12 galaxy clusters out to
about 7900, (for earlier measurements at large radii using
the Suzaku satellite, see Walker et al. 2013, 2012; Urban
et al. 2014). They find density profiles that steepen with
radius. In fact, their density profiles become steeper than
the asymptotic behavior of many of the best-fit beta pro-
files from Famaey et al. (2025), though not as steep as
1/r*. This suggests that the true asymptotic behavior of
the gas profiles is in between the two extrapolations we
use. In any case, the point of adopting multiple different
extrapolations is to illustrate a range of possibilities, not
to give a precise quantitative result.

3. METHOD
3.1. Weak-lensing mass profile measurements

Weak-lensing observations of a lens [, in our case a
galaxy cluster, are based on the shapes of many back-
ground source galaxies s. From these shapes and the
position angle between the sources and the lens, one can
infer the azimuthally-averaged tangential reduced shear
(g¢) (Bartelmann & Schneider 2001), which encodes the
cluster’s projected mass distribution. Indeed, assuming
spherical symmetry, we have to a good approximation
(Umetsu 2020; Mistele & Durakovic 2024)

AS(R)

= T )

(3)

where R is the projected radius, G4 is the azimuthally-
averaged reduced tangential shear divided by the
azimuthally-averaged inverse critical surface density,

_ g4
=y @

and f, refers to the following ratio of azimuthal averages
of powers of the critical surface density,

<Ec_ri2t,ls>

(Serieas)

crit,ls

fc = (5)

Further, ¥ and AY are, respectively, the surface mass
density and the excess surface mass density of the cluster.
The excess surface density is defined as

asn(r) = Mot

where Msp(R) is the mass enclosed by a cylinder with
radius R that is oriented along the line of sight.

We will be interested in the deprojected, 3D mass pro-
file M(r). To convert observations of the shear G4 and
the critical surface density f. into the 3D mass M, we as-
sume spherical symmetry and use the deprojection tech-
nique of Mistele & Durakovic (2024) (see also Mistele
et al. 2024b,a). This technique is based on Eq. (3) and
consists of two steps. First, we convert G4 and f, into
an excess surface density AX,

__ G+(B)
1- ch-i-(R)

—X(R), (6)

AS(R)

X exp (-/:dR’;%) G

This step is only important at relatively small radii where
the f.X term in the denominator of Eq. (3) is not negli-
gible. This roughly corresponds to /¥, also known
as the convergence k, not being negligible. In contrast,
at large radii where ¥/ is small, Eq. (7) reduces to
G; = AX. The second step is to convert AX(R) from
Eq. (7) into the 3D mass profile M (r),

/2 r
M(r) =4r2/ d0AE< : ) . ®)
0 sin 0

Equation (7) is mathematically valid as long as G f. <
1. This roughly corresponds to the condition that we are
in the weak-lensing regime (Mistele & Durakovic 2024).
Equation (7) further assumes that the critical surface
density, i.e. f., is constant as a function of projected
radius R. Mistele & Durakovic (2024) also provide for-
mulas for the case with a radially varying f.. A constant
fc is, however, often a reasonable assumption in prac-
tice and, following Umetsu et al. (2014), we adopt that
assumption here.

For the integrals in the above deprojection formulas,
we need to know the function G, (R) at all radii out to
infinity, whereas, in practice, we measure G only in a
discrete set of radial bins out to some outermost bin with
bin center Ry,.x. Thus, we must interpolate between the
discrete radial bins and extrapolate beyond Ri.x. In
practice, the effect of the interpolation on the inferred
M (r) is quite minor and the extrapolation is unimpor-
tant except when r is close to the last measured data
point at Ryn.x. As a result, the choices we make about
how to extrapolate and interpolate are unimportant over
much of the radial range we consider (Mistele & Du-
rakovic 2024; Mistele et al. 2024b,a).

To be specific, we extrapolate assuming that G fol-
lows a 1/R power law beyond Rpya.x and we linearly in-



terpolate the discrete G4 measurements in logarithmic
space. We take the uncertainty in these choices into ac-
count as systematic uncertainties, see Sec. 3.3. In Ap-
pendix E, we show that extrapolating G, assuming an
NFW profile instead of a 1/R power law does not sig-
nificantly change our results, further confirming that our
systematic uncertainty estimate is reasonable.

The above procedure is straightforward to implement
numerically and runs fast, taking only a few milliseconds
per galaxy cluster. We use the code provided by Mistele
& Durakovic (2024)* to implement Eq. (7) and Eq. (8) as
well as the propagation of uncertainties and covariances
discussed in Sec. 3.3 below.

3.2. Two-halo term

The deprojection technique discussed in Sec. 3.1 as-
sumes that all of the lensing signal is due to the clus-
ter itself. This is a good approximation at small and
moderate radii. Beyond a few Mpc, however, the signal
from the cluster’s local environment, the so-called two-
halo term, can become important (Umetsu 2020; Oguri
& Hamana 2011; Oguri & Takada 2011).

Within ACDM, we can estimate this contribution and
subtract it. The resulting subtracted mass profiles should
be a better estimate of the true mass profiles, but are
more model-dependent. Below we present results with
and without this two-halo subtraction, but the difference
turns out not to be important for our purposes. We
explain the details of our two-halo subtraction procedure
in Appendix A.

3.3. Uncertainties and covariances

We consider two sources of systematic uncertainties,
corresponding to our choices of how to extrapolate G
beyond the last measured data point and of how to in-
terpolate between the discrete radial bins. For the sta-
tistical uncertainties, we take into account uncertainties
in the shear measurements (g ), as well as uncertainties
and covariances from the inverse critical surface densities
(i), and covariances induced by the large-scale struc-
ture (LSS, Hoekstra 2003). We use linear error propaga-
tion to propagate the statistical uncertainties and covari-
ances into the reconstructed mass profiles. As a result,
any shortcomings in our uncertainty and covariance es-
timates affect only the error bars of the reconstructed
mass profiles; they do not enter the central values. The
details are discussed in Appendix B.

3.4. Non-parametric density reconstruction

One way to obtain a 3D density profile p(r) in a non-
parametric way is to first reconstruct the 3D mass profile
M (r) following Sec. 3.1 and then take a numerical deriva-
tive, p(r) = M'(r)/4mr?. However, numerical derivatives
can be tricky. Thus, we here introduce a density recon-
struction method that goes directly from shear to density
without any numerical derivatives.

Specifically, as we show in Appendix C, assuming

4 https://github.com/tmistele/SphericalClusterMass. j1

spherical symmetry we have®

p(r) = Li(r) + I(r) , (9)

r
with
™2 AN (5h5) — AS(r)
Li(r)= dg ind 1
0= [ ) =250 o)
In( )—2/W/2d9AE( - ) (11)
2= 0 Sino '

This replaces the second step Eq. (8) in the reconstruc-
tion method from Sec. 3.1, i.e. the step that converts AX
to M. The first step, Eq. (7), which converts the shear
G4 to AY, remains the same. The integrand of Eq. (10)
is finite everywhere despite the 1/ cos? @ factor. This can
be seen by expanding around 6 = 7/2.

While this non-parametric density reconstruction does
not involve numerical derivatives, it still requires rel-
atively low-noise data for good results due to the fi-
nite difference AX(r/sinf) — AX(r) in the numerator
in Eq. (10). Indeed, the 1/cos? up-weights precisely
the region 6 ~ 7/2 of the integral where AX(r/sin6)
and AX(r) are close to each other so that the differ-
ence becomes small. Despite this, initial tests with mock
data show that, at least in some situations, the non-
parametric density reconstruction method Eq. (9) is bet-
ter behaved than taking a numerical derivative of the
non-parametric mass profile from Sec. 3.1.

It should be possible to adjust the two-halo subtraction
procedure from Sec. 3.2 to work with this non-parametric
density reconstruction method. This is left for dedicated
follow-up work.

3.5. On the assumption of spherical symmetry

Our non-parametric deprojection method assumes
spherical symmetry. As we will now discuss, this assump-
tion can be relaxed in some important ways, making the
method more widely applicable and more robust.

First, consider clusters that are approximately spheri-
cally symmetric at large radii but whose inner regions are
more complex. Examples may be late-stage mergers or
clusters with a complex baryonic mass distribution. As
expected, our deprojection method does not work well
in the inner regions of such clusters due to the lack of
symmetry. However, perhaps surprisingly, the method
does infer the correct enclosed mass at larger radii, out-
side the non-symmetric core (Mistele & Durakovic 2024).
Thus, unlike methods based on fitting NFW or similar
profiles, our method will not be thrown off by complexity
or non-symmetry at small radii.

A related useful property of our deprojection method
is that mass measurements at large radii (beyond a few
times the miscentering offset) are not affected much by
miscentering. This is because the effect of miscentering is
essentially to induce non-symmetry at small radii, while
keeping approximate spherical symmetry at large radii.

5 The factor of 1/ may be reminiscent of the Abel trans-
form, p(r) = —x~! [*°dRY/'(R)/vR? —r2. Indeed, the Abel
transform can be written in an alternative way that looks quite
similar to Eq. (9) and contains no derivatives of X: p(r) =

—(mr) "L [T d0 Ly (S (555) — () -
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Fic. 4.— The mass profile of a prolate SIS, inferred from
its reduced shear using our non-parametric deprojection method
(Sec. 3.1), relative to the true mass profile (see Eq. (12)) for differ-
ent orientations of the line of sight. When averaged over all line of
sight orientations, the inferred mass matches the true mass at large
radii where /3¢t is negligible. At small radii, the non-linearity
due to X/t (see Eq. (3)) induces a small deviation from unity.
Our choice of ¥4 maximizes this non-linear effect. The tiny but
perceptible uptick at the largest radii shown is an edge effect (see
the main text).

In addition, there is a way to efficiently correct for resid-
ual miscentering effects. Below, we do not consider any
miscentering effects, so for brevity we refer the reader to
Mistele & Durakovic (2024) for details.

Finally, as we will now argue, our method works well,
on average, even for triaxial mass distributions such as
dark matter halos in ACDM (e.g., Bonamigo et al. 2015;
Jing & Suto 2002). The important caveat here is “on
average”. Indeed, the mass inferred by our deprojection
method for an individual triaxial halo can be off by a few
10%. This is illustrated by the gray lines in Fig. 4 for a
prolate singular isothermal sphere (SIS).

Concretely, Fig. 4 assumes a 3D density p(z,y,z) =

psis(v/ (@2 +y'2) /a2 + 2'2/c?) where the coordinates
z,y,z and z’,7’,2’ are related by a rotation that de-
termines the orientation of the line-of-sight and where
psis(r) o< 1/r%. We use the formulas from Tessore &
Metcalf (2015) to calculate the reduced shear assum-
ing, for simplicity, a single source plane with a constant
Yeris = 1750 M, /pc?. We adopt ¢ = v/2, a = 1/v/2, and
choose the prefactor of psrs such that, with ¢ = a = 1,
the mass within 1 Mpc is 105 M. The inferred mass
Minferreq 18 calculated by applying the deprojection for-
mulas Eq. (7) and Eq. (8) to the reduced shear. The
true mass My, is calculated from Eq. (12) (see below).
Our choice of Y., is as small as possible, given that we
are assuming weak lensing (we enforce G4 f. < 1 in the
radial range of Fig. 4, see Sec. 3.1). This maximizes the
non-linear effect at small radii discussed below.

The inferred mass Mipferreqa depends on how the halo is
oriented relative to the line of sight (gray lines in Fig. 4).
However, after averaging over all line of sight orienta-
tions, Minfered becomes very close to the true mass My e
(see the blue symbols in Fig. 4), where M,y is defined
as the mass enclosed in a sphere with radius 7,

Mtrue(r):/|l i p(2). (12)
x| <r

In fact, at sufficiently large radii, the line of sight average
of Minferred 18 exactly Miywe. Sufficiently large radii here
means radii where ¥/ < 1, which is usually a good
approximation beyond a few hundred kpc. We prove this
result in Appendix D and show that it holds for any mass
distribution, not just triaxial ones (in the radial range
where X /¥t < 1). The proof only requires one mild
and reasonable additional assumption on the redshift dis-
tribution of the source galaxy population. At small radii,
line-of-sight averaging does not exactly recover the true
mass profile due to the non-linearity induced by X/,
(see Eq. (3)), but that effect seems to be quite mild in
practice (Fig. 4).

Thus, on average, we expect our inferred mass profiles
to be very close to the true mass profiles even for tri-
axial halos. This is important for statistical analyses of
large samples of galaxy clusters, for example for cluster
cosmology. This is particularly true for analyses based
on quantities like Msgq., since these correspond to rela-
tively large radii where X /¥, is small. This result may
in principle change if the line-of-sight average is incom-
plete, for example due to intrinsic alignments or due to
selection effects. We expect such effects to be relatively
minor, but leave a detailed study for future work.

Figure 4 shows a tiny but perceptible deviation from
unity at the largest radii. This is an edge effect due
to our choice of extrapolating G4 beyond the last data
point assuming a 1/R decay (see Sec. 3.1) which is not
exactly true here. Such effects are taken into account in
our systematic error estimate (see Sec. 3.3).

4. RESULTS
4.1. Circular velocities and total mass profiles

Figure 5 and Fig. 6 show the non-parametric mass
profiles inferred using our non-parametric deprojection
method in terms of the implied circular velocities V,.(r) =

/GM(r)/r and in terms of M (r), respectively. We show
results with the ACDM two-halo contribution subtracted
(blue symbols, see Sec. 3.2) and without this subtraction
(gray symbols). The light blue band indicates systematic
uncertainties due to having to interpolate and extrapo-
late the observed shear profiles (Sec. 3.3). They become
important only close to the last data point. Neighbor-
ing data points in Fig. 5 and Fig. 6 are correlated (see
Sec. 3.3, Appendix B, and Fig. 16).

The circular velocities are remarkably flat, with no
clear indication of a decline at large radii. This is rem-
iniscent of galaxy rotation curves and perhaps indicates
a universal pattern. The approximate flatness was previ-
ously noted in Donahue et al. (2014). In contrast to our
analysis, Donahue et al. (2014) assumed a parametric
NFW profile and did not subtract the two-halo contri-
bution. Asymptotically, the circular velocities implied
by NFW halos decay like /In(r)/r and so we should
not expect to see asymptotically flat circular velocities in
ACDM. However, due to the relatively small concentra-
tions of the dark matter halos of massive galaxy clusters
and the limited radial range probed, our results are not
very sensitive to this expected asymptotic decline.

In terms of the total mass Msgg., our non-parametric
method gives results that are compatible with the NFW
fits from Umetsu et al. (2014). There is a small and
expected shift towards smaller masses (Fig. 7, left, see
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due to the uptick at large radii.

extrapolate the shear profiles (Sec. 3.3). Error bars indicate the statistical uncertainties.
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also Table 1) because Umetsu et al. (2014) did not take
into account the two-halo term. Indeed, if we turn off
our two-halo subtraction procedure, there is no longer a
significant shift (Fig. 7, right). Figure 7 also shows that
our uncertainties on Mypo. are only moderately larger
than those from Umetsu et al. (2014), despite making
significantly fewer assumptions. On average, our statis-
tical uncertainties are larger by 36% in the case without
two-halo subtraction. This average and Fig. 7 do not in-
clude Abell 383 because we could not determine a value
of Mo due to the uptick at large radii (see Fig. 6).

Nevertheless, an NFW profile is not a great fit for all
clusters. For example, the NFW fit from Umetsu et al.
(2014) for RX J2129 seems to indicate a clearly declining
circular velocity beyond ~ 0.5 Mpc (Donahue et al. 2014,
see also Fig. 8). In contrast, our non-parametric mass
profile implies a monotonic rise in the range (0.5—2) Mpc.
Inspection of Fig. 8 and the corresponding shear profile
in Fig. 1 suggests that the NF'W fit is thrown off by the
data points at small radii, where the shear profile (and
our non-parametric mass profile) show a clear change of
behavior. The reason for this qualitative change in be-
havior may simply be statistical fluctuations or it may be
real complexity in the lens’ mass distribution that is not
captured by the simple NF'W model. RX J2129 is classi-
fied as relaxed (Donahue et al. 2016), but this does not
necessarily preclude any significant non-symmetric struc-
tures in its center. For example, the temperature profile
is not well described by an isothermal profile (Jiménez-
Teja et al. 2024) and, using additional strong- and weak-
lensing data from Hubble, Merten et al. (2015) noted
some interesting morphology in the core of RX J2129.
The assumption of spherical symmetry may also be vio-
lated in other clusters which are known ongoing mergers
with complex X-ray emission, for example MACS J0717
(Ma et al. 2009) and MACS J0416 (Mann & Ebeling
2012).

In any case, this highlights an important advantage of
our non-parametric method: Its mass estimates at large
radii are not thrown off by complexity in the inner re-
gions of a galaxy cluster. This is discussed in detail in
Sec. 3.5 and in Mistele & Durakovic (2024). To be clear,
if the mass distribution in the inner regions of, e.g., RX
J2129 is highly non-symmetric, then our non-parametric
method cannot be trusted either at these small radii.
However, unlike an NFW fit, our inferred mass at larger
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Fic. 8.— The circular velocity of RX J2129 as in Fig. 5, with
the two-halo term subtracted, (blue) and the circular velocity im-
plied by the NFW fit from Umetsu et al. (2014) (gray). A similar
comparison for the other clusters can be found in Fig. 17 in Ap-
pendix E.

radii will still be correct in such cases.

In contrast to NF'W halos, asymptotically flat circular
velocities are a prediction of alternative proposals such as
MOND and, to varying degrees (Mistele et al. 2023a,b;
Durakovic & Skordis 2024), its relativistic completions
(e.g. Skordis & Ztosnik 2021; Blanchet & Skordis 2024;
Berezhiani & Khoury 2015). Qualitatively, our circular
velocities are consistent with that prediction. However,
the precise predictions of these models depend strongly
on the baryonic mass distribution. Previous studies find
that MOND-like theories underpredict the observed cir-
cular velocities of galaxy clusters, given their baryonic
mass (for some recent works see, e.g., Li et al. 2023, 2024;
Famaey et al. 2025; Tian et al. 2020; Kelleher & Lelli
2024; Ettori et al. 2019; Eckert et al. 2022). That said,
the fact that the observed circular velocities of clusters
seem to be approximately flat enables a potential solu-
tion to this discrepancy in terms of a missing baryonic
mass component located at relatively small radii. We
discuss this more in Sec. 4.7.

We note that our two-halo subtraction procedure is
specific to ACDM and may not apply in other theories.
Unfortunately, due to their inherent non-linearity (but
see Milgrom 2025), reliably estimating the two-halo con-
tribution in MOND-inspired theories is challenging. To
the best of our knowledge, no such estimates are cur-
rently available. One specific non-linear effect that would
have to be taken into account is the so-called external
field effect (Bekenstein & Milgrom 1984; Haghi et al.
2016; Chae et al. 2020, 2021) which may play a role
at large radii in galaxy clusters (Kelleher & Lelli 2024).
Since the effect of the ACDM two-halo term on our re-
sults is quite modest, we might expect the same to be
true for MOND-like theories. Properly addressing this
question will, however, require simulations of structure
formation in relativistic models such as AeST.

4.2. Density profiles

Figure 9 shows the 3D density profiles inferred using
the non-parametric method from Sec. 3.4. This method
is mathematically equivalent to taking the derivative of
the non-parametric mass profiles M (r) from Sec. 3.1 and
dividing by 47r2. The integral form Eq. (9) may, how-
ever, be preferable in practice because it avoids numer-
ical derivatives. Nevertheless, reconstructing good den-
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Fi1G. 9.— The 3D density profiles inferred using the non-parametric deprojection method from Sec. 3.4. For simplicity, no two-halo term
is subtracted. Negative inferred densities are indicated by arrowheads at the horizontal axis. As in Fig. 5, light bands indicate systematic
uncertainties from extrapolating and interpolating the shear profiles. Error bars indicate statistical uncertainties. Dashed gray lines show

the densities implied by the NFW fits from Umetsu et al. (2014).

sity profiles requires much smaller statistical uncertain-
ties than reconstructing good mass profiles. Indeed, for
some clusters, such as Abell 209 or Abell 2261, the recon-
structed densities look reasonable, but Fig. 9 also shows
large fluctuations and even negative inferred densities.

That said, while the negative densities in Fig. 9 are
likely just fluctuations, our deprojection method can
properly handle negative densities. This is important
for theoretical models where negative densities are real
physical effects. Examples are the ghost condensate in
AeST (Mistele et al. 2023a) and the “phantom dark mat-
ter” in some modified gravity models (Milgrom 1986).

Figure 9 also shows the NFW density profiles from
Umetsu et al. (2014). These were obtained by fitting the
weak-lensing convergence profile plus the average conver-
gence in the cluster center and match our non-parametric
density profiles reasonably well. As a further cross-check,
we have fit NFW profiles to both our non-parametric
mass and density profiles, finding results consistent with
expectations, see Appendix F.

4.3. Cosmic baryon fraction

The baryon fraction Qp/Q,, &~ 0.16 (Aghanim et al.
2020) plays an important role in cosmology. One may
expect that this cosmic baryon fraction is consistent with
the ratio f, = M,/(My + Mpy) in a gravitationally
collapsed structure with dark matter mass Mpy (e.g.,
Planelles et al. 2013; Angelinelli et al. 2023; Rasia et al.
2025). This expectation is not realized in galaxies, where
a much lower baryon fraction is detected. In contrast,
measurements of galaxy clusters at large radii seem to de-
tect most of the expected baryons (e.g., McGaugh et al.
2010; Wicker et al. 2023; Mantz et al. 2022).

Figures 10 and 11 show the baryon fraction implied by
our analysis as a function of radius. The two-halo term is

subtracted (Sec. 3.2). Our estimate of f is most reliable
where X-ray and weak-lensing observations overlap (blue
lines and symbols). In this radial range, most clusters in
our sample have an f, well below the cosmic 0.16.

At larger radii (gray lines and symbols), our results
depend strongly on how we extrapolate the gas densi-
ties beyond the radius RX, where the beta-profile fits
from Famaey et al. (2025) were well constrained by X-
ray observations. If we assume a 1/r* density tail (see
Sec. 2.2), most clusters remain well below the cosmic
baryon fraction even at large radii. This remains true
even if we ignore the two clusters where R . is likely
too small to make a reliable estimate of the gas mass at
large radii (diamond symbols). This is consistent with
the expectations for a MOND isothermal sphere, which
is one motivation behind considering a 1/r* tail.

On the other hand, if we extrapolate the gas densities
by taking the beta profile fits at face value even at large
radii, where they were not well constrained by observa-
tions, f tends to increase with radius, with several clus-
ters getting close to the cosmic baryon fraction around
r900c- That matches expectations from ACDM, but we
caution that the beta profiles from Famaey et al. (2025)
may underestimate the steepness of the gas density pro-
files at such large radii (see Sec. 2.2).

Beyond 7. (dashed gray lines), the f, of some clus-
ters grow significantly beyond the cosmic baryon fraction
when taking the beta profile fits at face value. However,
the relative uncertainties become quite large at these ex-
treme radii, so this effect is likely not significant.

4.4. Stellar mass—halo mass relation

Figure 12 shows the stellar-mass halo mass (SMHM)
relation implied by our non-parametric mass profiles. We
exclude Abell 383 because, as discussed above, we cannot
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determine a value of Msgg.. We include RX J1532, whose
BCG's stellar mass M, pcg is not provided by Famaey
et al. (2025), adopting its M, pce directly from Burke
et al. (2015).

We find very little correlation between M, pce and
Mogo. (Burke et al. 2015). This may seem unexpected
because, in ACDM, a strong correlation between these
two quantities should exist. However, our cluster sample
covers a relatively narrow range in total mass, so that

what we see in Fig. 12 may simply be the scatter in stel-
lar mass at an essentially fixed Msgg.. This scatter is
expected to be around 0.2 dex. Since the CLASH clus-
ters cover a range of redshifts, the redshift evolution of
the SMHM relation may add to the expected scatter.
With these considerations, the Moster et al. (2013) re-
lation seems roughly consistent with our results (dashed
gray lines in Fig. 12). As a further check, we have gen-
erated simple mock data from the Moster et al. (2013)
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Fi1c. 12.— The SMHM relation implied by our non-parametric
mass profiles (white symbols). The shaded gray region indicates
the Moster et al. (2013) relation in the redshift range of our cluster
sample. Dashed gray lines indicate 0.2 dex scatter in the direction
of My Mpoe around that region. Gray crosses show simple mock
data generated from the Moster et al. (2013) relation.

relation at z = 0.4, close to the mean z; of our CLASH
sample. In particular, we generated 250 equally-spaced
log,q Magoe/Me values between 10 and 16.5, calculated
M, Bce according to the Moster et al. (2013) relation
at z = 0.4, then added, respectively, 0.1dex and 0.2 dex
noise to Maoo. and M, pcg, and finally applied a cut
14.6 < logyg Maooc/Me < 15.5. These mock data also
seem consistent with our results (Fig. 12).

This is in contrast to massive spiral galaxies where the
Moster et al. (2013) relation is in conflict with observa-
tions (e.g., Di Cintio & Lelli 2016). We also considered
the SMHM relation from Kravtsov et al. (2018), finding
that it is significantly offset from our measurements to-
wards higher M, gcq. However, the BCG stellar masses
in Kravtsov et al. (2018) are defined to include stellar
mass within many hundred kpc, including contributions
from the intracluster light, and are in fact extrapolated
to infinity. This contrasts with Burke et al. (2015) who
measured M, pcg within 50 kpe, which may explain the
offset compared to Kravtsov et al. (2018).

4.5. BTFR

The BTFR relates the asymptotic flat circular velocity
Vaat to the total baryonic mass M. In Sec. 4.1, we saw
that the circular velocities of the CLASH clusters are
approximately flat. Thus, for simplicity we define Vi,
as the weighted average of the circular velocities V, for

750kpc < r < 3Mpc, (13)

with weights given by the inverse squares of the statistical
uncertainties. The circular velocities from Sec. 4.1 are
not perfectly flat, so our Vaat will change somewhat if
we choose a different radial range. We have verified that
this effect is relatively minor and that other reasonable
choices do not change our conclusions.

Regarding the second ingredient of the BTFR, the total
baryonic mass Mj, we face the issue that the gas masses
Meas(r) implied by the double beta fits from Famaey
et al. (2025) are divergent. This is not an issue for the
1/r* extrapolation which integrates to a finite total mass
(see Sec. 2.2), but we must deal with it when we extrap-
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Fic. 13.— The BTFR implied by our non-parametric weak-
lensing mass profiles and the baryonic mass estimates from Famaey
et al. (2025). Baryonic masses assume a 1/r* gas density tail (left)
or extrapolate the best-fit beta profiles out to ropoe (right), see
Sec. 2.2. Gray diamonds indicate the two clusters with the smallest
radial range of X-ray observations, whose Mj, are likely significantly
underestimated with the 1/r% extrapolation. The solid gray line is
the galaxy-scale BTFR from Lelli et al. (2019). The shaded band

indicates a simple ACDM estimate with V.t = +/GMyir/Tvir,
Myir = foMp, and fp = 0.16. The size of the band corresponds to
the range of redshifts of the clusters shown.

olate by taking the beta profile fits at face value. Thus,
in the latter case, we simply evaluate M, at the radius
r900 implied by our non-parametric mass profiles (in-
stead of at 7 = o00). This choice is somewhat ad-hoc
but may have physical significance within ACDM, where
the baryon fraction may be expected to be close to the
cosmological one at the virial radius (see Sec. 4.3).

The resulting BTFRs are shown in Fig. 13. We do not
subtract the two-halo term. We have verified that it is
not important. How we estimate M, is important, how-
ever. Extrapolating with a 1/r* tail leads to a significant
offset from the Lelli et al. (2019) galaxy-scale relation
(solid line in Fig. 13), while evaluating the double beta
fits at o0 leads to a comparably small offset.

In either case, our results are consistent with exist-
ing literature finding that galaxy clusters may follow a
parallel relation compared to galaxies (Sanders 2003; Mc-
Gaugh 2015). With the 1/r* extrapolation, the two clus-
ters with the lowest M, clearly do not follow a parallel
relation, but this is expected since their Mg,s is likely
significantly underestimated (Sec. 2.2).

Figure 13 also shows a simple ACDM estimate based on
identifying (Vaat, Mp) with (\/GMyir/Tvir, foMyir) where
fv = 0.16 is the cosmic baryon fraction. This corresponds
to a slope of 3 (McGaugh 2012) which is notably different
from the galaxy-scale BTFR which has a slope of about
4. A slope of about 4 seems to be a somewhat better
representation of the trend in our results.

4.6. RAR

The RAR relates the Newtonian acceleration gp,, due
to the baryonic mass at a given radius, G My(r)/r?, to
the total acceleration gons, GnM(r)/r?, at that radius.
Unlike the BTFR, this relation can be evaluated locally
at each radius (assuming spherical symmetry). Thus, in
the radial range where X-ray and weak-lensing observa-



12

Abel1209 Abel12261 RX Abell611
1/r1 extrap.
™ best—fit extrap.
[ missing M fit
E 1910
E=
2
El
>
=
o0 _
S 1wt
q
w
E 1920
o
k=
2
3
>
S
20 —
S gt
q
)
=1 10710
=]
g
2
2
>
5
20 —
S ot
™
)
)
E g0
=
g
2
g
B
E
20
~11
L 10

log in ms—2 log inms—2 log inms—2 log in ms—2

10 gbar 10 gbar lf)gba.r lf)gba.r

F1G. 14.— The RAR implied by our non-parametric weak-lensing mass profiles and the baryonic mass estimates from Famaey et al.
(2025). Blue circles indicate the radial range where X-ray and weak-lensing observations overlap. Beyond that range, we extrapolate the
gas densities assuming a 1/r tail (gray squares) or assuming the best-fit beta profiles remain valid even at large radii where they were
not well constrained by observations (gray triangles). We do not subtract the two-halo term (Sec. 3.2). Two data points with negative
Jobs for MACS J0744 (see Fig. 6) are omitted. The dashed gray line indicates equality of gobs and gpar, the solid gray line indicates the
galaxy-scale RAR from Lelli et al. (2017). Assuming the galaxy-scale RAR holds for clusters, one can fit a missing baryonic component
(not included in gpar) t0 gobs (solid green lines, see Sec. 4.7).

— ¢ galaxies (KiDS)
10 E 1/rtextrapolated M, 3 best—fit extrapolated M, & iﬁaﬁl;os 9(SPARC)
el
Abell2261
RXJ2129
Abell611
MS2137
RXJ2248
MACSJ1115
MACSJ1720
MACSJ0429
MACSJ1206
MACSJ0329
RXJ1347
MACSJ0744
MACSJ0416
MACSJ1149
MACSJ0647

—2

lof in ms
&) 10 gobs

inms—2 log in ms—2

log

10 9 bar 10 9 bar

FIG. 15.— Same as Fig. 14, but all clusters combined. Left: Extrapolating the gas densities with a 1/r* tail. Right: Extrapolating the
gas densities assuming the best-fit beta profiles. Symbols are as in Fig. 14. Gray and white diamonds show the RAR of galaxies from
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tions overlap, we can measure the RAR without having
to worry about how to extrapolate the gas profiles.

The RAR implied by our baryonic and total mass esti-
mates of each galaxy cluster are shown in Fig. 14. Blue
symbols indicate the range where X-ray and weak-lensing
observations overlap. Outside this range, we separately
show extrapolations of M, assuming a 1/r* gas density
tail and assuming that the best-fit double beta profiles
continue to be valid (Sec. 2.2). We do not subtract the
two-halo term. Doing so does not significantly change the
results. Figure 15 shows the data of all galaxy clusters
combined.

The radial range where X-ray and weak-lensing obser-
vations overlap is quite narrow for many clusters and
non-existent for 3 clusters. Thus, we cannot draw strong
conclusions about the galaxy cluster RAR at large radii
or, equivalently, small accelerations. We can, however,
see that the galaxy-scale RAR seems to underpredict the
gobs Of clusters already at relatively small radii, i.e. at
relatively large gpar. For a few clusters, this may be
because the weak-lensing measurements of gops are not
trustworthy at small radii (e.g. RX J2129, see Sec. 4.1).
Another hypothesis (e.g., Milgrom 2008; Kelleher & Lelli
2024; Li et al. 2023; Famaey et al. 2025) is that there is
an additional baryonic mass component not captured by
our estimate of gnha,. That the galaxy-scale RAR un-
derpredicts gobs already at small radii means that, if it
exists, this missing mass is not (only) to be found at large
radii. We discuss this more in Sec. 4.7.

4.7. Missing mass to recover galaxy-scale RAR

In Sec. 4.6, we saw that the galaxy-scale RAR under-
predicts the gons observed in clusters. Assuming that the
RAR is a universal relation, this may be a sign that there
is a missing baryonic mass component (Eckert et al. 2022;
Kelleher & Lelli 2024; Famaey et al. 2025) such as unde-
tected, compact clouds of cold gas (Milgrom 2008). To
test this hypothesis, Kelleher & Lelli (2024) have fit the
observed gops in clusters by adding a missing M}, com-
ponent and assuming that the galaxy-scale RAR holds.
They assumed a missing mass density proportional to
(Mum tot/73)(1 + 7/75) =% and found that such a profile
could reasonably explain the observed gons within about
1 Mpc, where their data is likely not affected by hydro-
static bias. The same missing mass profile was also con-
sidered by Famaey et al. (2025) among a variety of other
profiles. We here repeat the fitting procedure of Kelleher
& Lelli (2024) using our measurements.

The fit has three free parameters, Mmm tot, 7's, as well
as a parameter Y, that scales the observed baryonic
mass, akin to a mass-to-light ratio. We assume flat priors
for 12 < logyg Mmm tot/Me < 16 and 1 < log;, rs/kpc <
4 as well as a log-normal prior around Y, = 1 with 0.1 dex
scatter. We do not subtract the two-halo term. Sub-
tracting the two-halo term does not significantly change
the results. For the RAR acceleration scale, we adopt
ap = 1.2-1070m/s* (Lelli et al. 2017). The resulting
best fits are shown as solid green lines in Fig. 14 and
Table 2.

Overall, we find that a missing baryonic component
can reasonably fit our observations. We find best-fit pa-
rameters roughly consistent with those from Kelleher &
Lelli (2024) and Famaey et al. (2025). Finding a rea-
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sonable missing M, profile fails only when the observed
galaxy-cluster RAR in Fig. 14 dips below the solid gray
line, i.e. below the galaxy-scale RAR. This is because,
assuming the galaxy-scale RAR holds, such dips require
negative missing mass densities. This mostly only hap-
pens at the very largest radii, i.e. smallest gnar, and when
extrapolating the gas densities by taking the beta profile
fits from Famaey et al. (2025) at face value. No signif-
icant negative mass densities are required when extrap-
olating the gas density with a 1/r* tail, corresponding
to a MOND isothermal sphere (Milgrom 1984). We also
note that neighboring data points are positively corre-
lated (see Fig. 16) so that the visual impression of neigh-
boring data points fluctuating down together may be
misleading. In any case, previous analyses have also seen
this phenomenon. At such large radii, however, analyses
based on gas thermodynamics may suffer from hydro-
static bias (Kelleher & Lelli 2024), gpa, may not be well
constrained (Famaey et al. 2025), and, depending on the
theoretical framework, an external field effect may be
important (Kelleher & Lelli 2024).

As an alternative approach, assuming that the galaxy-
scale RAR holds universally, we can directly calculate
and study the (non-parametric) missing mass profiles
M™ss(r) implied by our measurements of gobs and gpay-
We do so in Appendix G, finding similar results as above.

5. DISCUSSION
5.1. Concentration and sparsity

Our non-parametric results suggest a shift of perspec-
tive: Away from first performing a parametric fit and
then calculating quantities of interest in terms of the fit
results, towards directly inferring quantities of interest
from the non-parametric profiles M(r) or p(r), similar
to how we measured the total mass Mg, in Sec. 4.1
or the baryon fraction My(r)/M(r) in Sec. 4.3. Another
quantity of interest is the concentration ¢, which captures
information about the shape of the mass profile. Tradi-
tionally, definitions of ¢ are tied to specific parametric
profiles such as the NF'W profile. A concentration can,
however, also be defined in a non-parametric way.

One example is the ratio cg.1 = ra00c/70.1 Where g1
is the radius that encloses 10% of the total mass (Yasin
et al. 2023). Indeed, in principle, we can directly mea-
sure ¢g.1 using our non-parametric mass profiles. Unfor-
tunately, just like parametrically defined concentrations
(Appendix F), ¢g.1 is challenging to measure in prac-
tice without extending the radial range covered by weak-
lensing observations (for example using strong lensing,
Merten et al. 2015; Umetsu et al. 2016, 2025). In our
current sample, only 4 clusters reach sufficiently small
radii to determine cg 1.

Another example is the sparsity, defined as Magoe/Mac
with, for example, A = 500 or A = 1000 (Balmes et al.
2014). Initial results indicate that our non-parametric
mass profiles tend to imply smaller sparsities than the
NFW fits from Umetsu et al. (2014), consistent with the
results from Balmes et al. (2014). A proper statistical
analysis as well as a comparison between different para-
metric and non-parametric concentration measures are
left for future work.

5.2. Density profiles
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TABLE 2
FIT PARAMETERS OF THE MISSING M} PROFILES FOLLOWING KELLEHER & LELLI (2024).

‘ 1/r* extrapolated M,

best-fit extrapolated M,

Name log1g Mmm,tot logq ps log 7s logqog T log1g Mmm,tot logq ps logg 7s logo T
Mg Mg Mpc—3 kpc Mg Mg Mpc—3 kpc
Abell 209 14.997505 154875925 2637012 4+0.017010 | 14.917508 15567537 2587013 —0.017010
Abell 2261 14.8375 1% 16.0270°20 2407015 4+0.007010 | 14797502 16.0978325 2367015 —0.0370 09
RXJ2129 13.927807 17757008 150703 4+0.007010 | 13.88T0 05 17.8970ET  1.45703%  —0.0270 09
Abell 611 14.49}%55 16.23%1))?; 2.21}%%2 +o.02£§~é§ 14.39%%{% 16.48%@; 2.09$§;§§ +0.02$§-_i§
norzts | 150008 oserbE Soerdd Tooondd | s Pfsem DUnedy el
-J4_1.08 9%_314 +49_0.85 Y9 _0.10 -S%_1.08 -9%_3.33 -19_0.81 -Y9_0.10
MACSJ1115 15.03}%% 14.89;?:%2 2.84}%% +o.01£§~é§ 14'52%% 15.07}2122 2.63$§:§§ +0.05$§'_i(})
MACSITN | 0Tl ISITm Loy 00| LT I Lofin 00T
-4V _0.22 97 _1.46 <l _0.48 Yl_o.10 Vi_0.32 90 _1.67 —0.42 Y% _0.09
MACSJ1206 | 14.3475372 17517730 1.72%097  40.017010 | 14.207005 17797130 1611045 —0.0170 09
MACSJ0329 | 14.377508  18.6975 7% 1.35%03%  —0.017010 | 14.347008 1876758 1317030  —0.0470 09
RXJ1347 14.837519  17.71t1ey 183703 40.017010 | 1477t00S 18.0671ds 1697092 —0.02700%
MACSJO744 | 14557028 16.78708S  2.0570¢0  +0.017010 | 14517028 16.86718Y  2.00%08]  —0.027010
MACSJ0416 | 14.197525 16727045 1.04%03T  40.027010 | 14127025 1707tEl 180105 —0.0170 09
MACSJ1149 | 14.827030  16.197055 2347020 4+0.027010 | 14567025 17107702 1.92%055  —0.0070 09
MACSJ0647 | 14.327080 15907187 22570 7L 40.0370 15 | 14.2670370 15837302 2267077 4+0.0470 10

NOTE. — The listed values are the 16th, 50th, and 84th percentiles. Values of ps = 3Mmm,tot/(47rrg) are provided for easier

comparison to Table 1 of Famaey et al. (2025).

In Sec. 4.2, we saw that reconstructing non-parametric
density profiles is viable but noisy with current data.
One way to ameliorate this may be to stack many clus-
ters. This is especially relevant given the large cluster
samples with weak-lensing data that are expected to be-
come available from instruments such as Euclid (Euclid
Collaboration et al. 2025), Roman (Spergel et al. 2015),
or Rubin (LSST Science Collaboration et al. 2009). This
may enable model-independent constraints on quantities
such as the splashback radius (e.g. Diemer & Kravtsov
2014; More et al. 2015, 2016), allowing to distinguish
between different models of dark matter and modified
gravity (Adhikari et al. 2018).

For example, in the context of MOND, one might ex-
pect a much weaker splashback signal than in ACDM.
Indeed, the splashback feature is a steep drop in density
corresponding to accreting collisionless matter reaching
its apocenter after first infall. In ACDM, a splashback
feature exists in both the dark matter and galaxy den-
sity profiles since both are collisionless. Since dark mat-
ter is the dominant contribution to the gravitational po-
tential, a splashback feature is then visible also in the
weak-lensing signal. In contrast, in MOND-like theories,
the dominant contribution to the gravitational poten-
tial is due to the collisional intracluster medium, with
only a sub-dominant contribution from the collisionless
galaxies. As a result, one may expect to see a weaker
splashback feature in the weak-lensing signal.

When testing individual theoretical models, it may
be easiest to follow ACDM-based analyses (e.g., More
et al. 2016) and fit a parametric density profile that is
chosen according to the specific model under consider-
ation. Nonetheless, non-parametric constraints are de-
sirable since they are easier to interpret and to apply
to many models at once. The feasibility of such non-
parametric constraints will be studied in future work.

5.3. Baryonic mass measurements

Compared to our total mass measurements from weak
lensing, the baryonic masses are relatively poorly con-
strained at large radii. This limits our results regard-
ing baryon fractions and regarding scaling relations such
as the BTFR and RAR. Better knowledge of the hot
gas density profiles would enable stronger constraints on
cosmology, dark matter, and modified gravity. Indeed,
as discussed in Sec. 2.2, results from the X-COP project
suggest that, while our simple 1/r* extrapolation is per-
haps too steep, the beta profile fits from Famaey et al.
(2025) may not be steep enough at large radii. Cur-
rently, it is unknown where our cluster sample falls be-
tween these two extremes.

It would therefore be very useful to combine our non-
parametric weak-lensing measurements with improved
gas density profiles from follow-up X-ray observations.
Another possibility would be to stack the gas densities
of a large sample of galaxy clusters, for example from
eROSITA (Bulbul et al. 2024; Kluge et al. 2024), to in-
crease the signal-to-noise ratio at large radii. These could
then be combined with stacked weak-lensing observations
of the same sample from, for example, Euclid.

5.4. Cluster cosmology

Cluster cosmology aims to constrain cosmological pa-
rameters such as €2, and og using the high-mass end
of the halo mass function. This requires unbiased mass
measurements. We expect that the non-parametric
methods discussed here will be useful in minimizing the
impact of a number of important biases that affect such
measurements. In particular, many cluster cosmology
analyses are based on measurements of Msgg.. Non-
parametric measurements of Msqq. using our method will
(see Sec. 3.5 and Mistele & Durakovic 2024): 1) Not be
thrown off by baryonic effects that may change the shape
of the mass profile, 2) not be thrown off by complex, non-



symmetric mass distributions at the centers of clusters
(e.g., late-stage mergers), 3) not be thrown off, on av-
erage, by triaxiality, 4) be less affected by miscentering
(and there is an efficient way to correct for residual mis-
centering effects), and 5) apply directly to models beyond
ACDM such as models based on ultra-light dark matter
that may change the shape of the halo profile. In ad-
dition, our mass reconstruction runs fast, taking only a
few milliseconds per cluster to run.

The caveat is that, by making fewer assumptions,
the statistical uncertainties become larger. However, as
shown in Sec. 4.1, that is only a moderate effect in prac-
tice. Also, with large cluster samples from upcoming and
future surveys statistical uncertainties will no longer be
the main limiting factor. In fact, a trade-off in favor
of significantly reduced systematic uncertainties, i.e. bi-
ases, at the cost of somewhat larger statistical error bars
may be required in order to fully exploit the potential of
instruments such as Euclid, Roman, or Rubin.

6. CONCLUSION

We have applied a new weak-lensing deprojection
method to the CLASH sample of galaxy clusters. We
have inferred non-parametric mass and density profiles,
which we have studied by themselves as well as in re-
lation to the baryonic mass components. We find: (1)
The implied circular velocities are approximately flat.
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(2) The radially resolved baryonic mass fractions vary
significantly from cluster to cluster and depend strongly
on how we extrapolate the X-ray gas profiles at large
radii, so it is unclear whether the CLASH clusters reach
the cosmic baryon fraction expected in ACDM. (3) The
non-parametric masses are consistent with the ACDM
SMHM relation. (4) The CLASH clusters deviate from
the BTFR and the RAR defined by galaxies, but the
offset depends strongly on how we extrapolate the gas
masses. Contrary to some previous results based on hy-
drostatic equilibrium, we find that galaxy clusters may
fall on the same BTFR and RAR as galaxies if one adds
a suitable positive baryonic mass component.

Several of these results are limited by the baryonic
masses being relatively poorly constrained at large radii.
Improving on this will unlock stronger constraints on cos-
mology, dark matter, and modified gravity.
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APPENDIX
A. TWO-HALO TERM IN ACDM

A.1. Subtraction procedure

Here, we describe the details of the two-halo subtraction procedure from Sec. 3.2. The two-halo term becomes
important only at projected radii R that are sufficiently large for 3 /X to be small. As is clear from Eq. (3), the
distinction between AY. and G4 is then unimportant and we have to a good approximation A¥X = G,. For our
two-halo subtraction procedure, it then suffices to consider only the second step Eq. (8) of our deprojection procedure,
i.e. the step that converts AY. to the mass M. The first step that converts G; to AX is unimportant.

The excess surface density we observe, AXs contains contributions both from the galaxy cluster itself, AXqy,, and
from the two-halo term, AXqy,

AYops(R) = AY L (R) + AYon(R). (A1)

When we apply the deprojection formula Eq. (8) from Sec. 3.1 to the observed AX.,s, we infer a mass profile Mg
that likewise contains the desired contribution from the galaxy cluster itself, My, and a two-halo contribution My,

Mobs(r) = Mlh(T) + Mzh(r) s (A2)

W here
M (7 ) 47 / d E 2h ( ) . ( 3)

We note that My, is not the mass profile of any actual object. It just quantifies by how much our deprojection
technique overestimates the true galaxy cluster mass profile when applied to lensing data that contains contributions
from a cluster’s local environment. In practice, there is a technical complication, not captured by Eq. (A3), due to the
fact that we extrapolate G4 beyond the last measured data point at Ruyax. This requires a modification of Eq. (A3)
that we discuss separately in Appendix A.2. Thus, in practice, we use Eq. (A12) instead of Eq. (A3).

A simple estimate of AXgy, within ACDM is (e.g. Guzik & Seljak 2001; Oguri & Hamana 2011; Covone et al. 2014)

ASo(R) = b% /0 Saee, (%) (ke 1), (A4)

where J, denotes the second Bessel function of the first kind, b is the bias, py, ¢ is the mean matter density at redshift
z =0, and Py, (k¢; #) is the linear matter power spectrum at k; = £/[(1+ z)D(z;)]. We calculate P, using CAMB and
we adopt the bias from Tinker et al. (2010) which gives b as a function of the mass Ma,, and redshift z;,

b =b(z, MAm) . (A5)
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Here, M., is the mass within the radius ra,, where the cluster’s average mass density drops below A times the
cosmological matter density p,, at the cluster redshift z;. Below, we use My, instead of Ma,,. To avoid a mismatch,
we use a value of A that makes the two halo mass definitions equivalent, namely A = 200pcit(21)/5m (21)-

Our goal is to recover the galaxy cluster’s mass profile Mj;, by subtracting the two-halo contribution Msy, from
Mops. To this end, we use the independent estimate of the two-halo contribution Eq. (A4). This estimate of AXay
depends on the redshift and the total mass of the galaxy cluster. It can be converted to May, using Eq. (A3) (or,
rather, Eq. (A12)). We denote this estimate of My, by

Moy (1| Maooe) , (A6)

which makes the dependence on the total mass explicit. Given the observed Mg, we can determine Msgo. by
numerically solving the following equation for My,

Mobs(r200¢) = Maooe + Man(r200¢ | Maooe) 5 (A7)

where Magoe = (47/3) 200 - perit 7300- This equation follows from Eq. (A2) by using our estimate May, (r|Mago.) for the
two-halo contribution and by using that, by definition, My (7200.) = Maooe. Having determined Moo, in this way, we
can extract the desired mass profile My, (r) of the galaxy cluster by subtracting the two-halo contribution,

My (r) = Mops(r) — May (r|Magoc) - (A8)

The above procedure can easily be adapted to work with Msqg. instead of Msygg.. We will use Mygo. instead of Magge
for one galaxy cluster, Abell 383, where a value for Msgg. cannot be determined.

A.2. Adjustments due to extrapolation

The observed AY. contains contributions from both the 1-halo and 2-halo terms, see Eq. (A1). Thus, applying our
deprojection formula Eq. (8) gives

/2
) r r . . .
Mops(r) = 4r /0 do (AZlh (sin@) + AXgy (sinﬁ)) ,  (not quite correct in practice) . (A9)

This is what Eq. (A3) is based on, but it is not quite what we actually infer in practice. The reason is that, after the
last measured data point at Ryax, we no longer use AY = AX¥q, + AXyy, in the integrand. Instead, we use a power
law extrapolation, G4 oc 1/R™ (see Sec. 3.1). At the large radii relevant for R > Ry,.x, this extrapolation also implies
AY < 1/R™ to a good approximation. Thus, what we actually infer is

m/2 Omin
_ 2 r L R&ax sn
Mops(r) = 4r / a9 (AZlh (sm@) TN (SM)) + (AT (Rinax) + AT (Finax)) 22 / dosin™ 0|
Omin 0

(A10)

where Oin = arcsin(r/Ruyax). If our power law extrapolation correctly captures the behavior of AXyy,, this is

7!'/2 r Rn Gmin
MOP(r) = My (r) + 412 / 0 Ay, (—) + ANy (Runay) —222% / dfsin™ 0| . (A11)
i sin ¢ " Jo

Indeed, for the extrapolation, one should choose a power law decay 1/R™ that plausibly matches the behavior of the
shear due to the galaxy cluster itself, i.e. due to the one-halo term (not the total shear including the two-halo term).
We can now read off the correct expression to use for Moy, (7| Magg.) in our two-halo subtraction procedure,

2 /2 T R;rllax Omin N
Mgh(T‘MQOOC) = 4r df AEQh ( ) + Azgh(Rmax) n dfsin™ 0| . (A12)
r 0

emin Sin 0
This replaces Eq. (A3) and takes into account that we extrapolate beyond the last measured data point Rpyax. See
Appendix E for how to adopt this procedure when extrapolating assuming an NFW profile instead of a power law.

B. UNCERTAINTIES AND COVARIANCES

As systematic uncertainties, we consider our choices of how to extrapolate and interpolate the shear profile G.
To estimate the effect of these choices, we first calculate mass profiles with opposite and extreme choices of how to
extrapolate G, beyond the last data point. In particular, we consider extrapolating G, assuming 1/R? and 1/ VR
power law decays. These correspond, respectively, to a decay as fast as for a point particle and to a decay significantly
slower than for an SIS. These cases likely bracket the true behavior of the cluster’s shear. At each radius r, we calculate
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Fic. 16.— The correlation matrix of the two-halo-subtracted masses inferred for Abell 209. The correlation matrix is defined in terms of
the covariance matrix as Cov(M (1), M(r')) /o nr(ryTnr(rry-

the minimum and maximum mass achievable in this way. Schematically,

M(T)max _ max M(r)‘cxtrapolatc 1/R™ , (B].)
ne{i 1,2}

M(T)min _ min M(r)‘extrapolate 1/R™ ] (BQ)
ne{i,1,2}

To take into account systematic uncertainties from interpolation, we add (subtract) the difference between the mass
profiles obtained using linear and quadratic interpolation to M™?* (from M™™"). Schematically,

MII?I?I)I( N MI;?I?I?I(:I: M(r”quadratic _ M(T)‘linear . (B3)

For the statistical uncertainties and covariances, we use linear error propagation to convert uncertainties and co-
variances on G4 into uncertainties and covariances on the inferred mass M. Following Mistele & Durakovic (2024),
we implement this error propagation by writing differentiable Julia code and then using ‘ForwardDiff.jl* (Revels et al.
2016) to calculate the required Jacobians. This reduces linear error propagation to a simple matrix multiplication.

For the covariance matrix of Gy = (g4)/(X_1,), we take into account uncertainties in (g4 ) as well as uncertainties
and covariances due to (X}, ,.) and due to the correlated LSS (Hoekstra 2003),

CcY = Cf + CGi + Cliss - (B4)

We assume that the measurement uncertainties on (g ) in different radial bins are uncorrelated,

a2 .
(CS) . = ;-2 (B5)
974 <Ecrilt>2 ,
where ¢ and j run over the radial bins and 0,4, ; denotes the uncertainty on (gy) in the i-th radial bin. As discussed

in Sec. 3.1, we assume (XL , ) to be the same in all radial bins. This induces correlations between the radial bins,

crit,ls
o2,
(Cgit)ij = <g+,i><g+,j>ﬁa (B6)
crit
where o4 is the uncertainty on (Zc_rilws). These formulas follow from the definition Eq. (4) of G in terms of g4

and X¢i5. The LSS contribution is important only at relatively large radii and following Umetsu (2020) we calculate
it from the non-linear matter power spectrum produced by CAMB (Lewis & Bridle 2002). For simplicity, we assume
all source galaxies to be located in a single source plane with effective redshift z; . when calculating Cf;ss (see also
Miyatake et al. 2019). We take z, e to be the source redshift whose critical surface density Yy is (nLy.

crit

In addition to G, our deprojection method from Sec. 3.1 also has a second input, namely f. = (X_2 ,)/(3_ L ).

crit,ls crit,ls
For simplicity and because Umetsu et al. (2014) do not readily provide these, we do not take into account uncertainties
in f.. We expect that doing so would only have a minor effect since f. only enters as the prefactor of X/¥.; in
the relation Gy = AY/(1 — f. - ¥/Xc). Indeed, this term is unimportant at large radii and gives only moderate
corrections at small radii. We expect the same to hold for corrections to the uncertainties and covariances induced by
fe. In addition, we expect the uncertainties on f. to be less than 10%. This is smaller than the typical uncertainties
on the shear G at small radii, which would further reduce the importance of the f. uncertainties.
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As mentioned above, we obtain the covariance matrix of the inferred masses M(r) by linearly propagating the
covariance matrix of G4 (R). As a representative example, Fig. 16 shows the correlation matrix of the inferred, two-halo
subtracted masses M (r) for Abell 209. We see that neighboring data points are correlated. In part, these correlations
are already present in the inputs to our method and are just propagated into the result. But more importantly, the
integrals Eq. (7) and Eq. (8) mix different radii, producing additional correlations with the characteristic pattern
previously found in Mistele et al. (2024a).

C. DERIVATION OF DENSITY RECONSTRUCTION FORMULA
We start with Eq. (8) which gives M (r) in terms of AX(R),

.7" 9) =4r21(r), (C1)

S11

w/2
M(r) = 47"2/0 deAz(

where I denotes the @ integral. Using p = M'(r)/4nr?, this gives

I'(r)  2I(r)
=—" 4+ —=. C2
o)==+ = (C2)
Our goal is to get rid of the derivative in the I’(r) term. The idea is to pull the derivative into the integrand of the
0 integral, so that it acts on AXY, and then use integration by parts. It will be useful to temporarily relax the upper
integration boundary to m/2 — e and take the limit ¢ — 0 at the end of the calculation,

) . El T
1) =l 1) = i, [ 003 () ()
We have . .
N G 1 1 f27° sinftand r
L(r) 7/0 9 A% (sinH) sinf T/O 40 sin 0 % [AE (sine)} ’ (C4)
After integrating by parts, this becomes
, _ _1 r 9:%—6 1 %_6 r
1) = — [tanaAz (sin@)]e:o to ] a0 @me)ax <sm9) (C5)
AX(r) 1 [27°€ r 1
er + r /0 40 (sinﬁ) cos? 6 +0(e) (C6)

The 1/e divergence is why it was useful to relax the upper integration boundary. Importantly, a 1/e divergence exists
not only in the boundary term but also in the remaining integral. In fact, the divergence from the remaining integral
precisely cancels the 1/e from the boundary term. This must be the case because the expression we started with was

finite in the limit ¢ — 0. The factor of AY ( z ) in the remaining integral is well-behaved at § — 7/2, i.e. at the

sin 6

upper integration boundary in the limit € — 0. The 1/e divergence is due only to the 1/ cos? f factor. In fact,
27 dp 1
—— =—-+0(e). c7
/0 cos?f € +0(e) (€7
We can therefore rewrite the 1/e from the boundary term as this 1/ cos? § integral and combine all integrals into one,
1 (27 AS(55) — AX(r)
I(r)=- df sind Ofe). c8
=7 w2 220 40 (c8)

The integrand of this integral is finite everywhere in the interval (0,7/2). This can be verified by expanding the
integrand around 7 /2. The limit ¢ — 0 can now be taken,

I'(r) = lim I’(r) = 1 /072' do AY (SJW) — AX(r) ) (C9)

e—0 © r cos2 0

Plugging this result into Eq. (C2) gives the desired result Eq. (9).

D. LINE-OF-SIGHT AVERAGE OF INFERRED MASS

As discussed in Sec. 3.5, our deprojection formulas from Sec. 3.1 were derived assuming spherical symmetry. Here
we show that, nevertheless, if we average over all line-of-sight directions, our deprojection formulas Eq. (7) and Eq. (8)
produce the true mass M. (see Eq. (12)) even for non-symmetric mass distributions. This result holds given that
two conditions are satisfied: (i) We restrict to the radial range where X /Y, is negligible, and (ii) the source galaxy
redshifts follow probability distributions that do not depend on the azimuth (but may depend on projected radius R).



20

The latter condition disallows a lopsidedness in the source galaxy population, but does allow a radial variation, for
example due to obscuration towards the cluster center.
To show that this result holds, we first note that the true mass Myuo(r) = f ) <r 3% p(7) . (12)) can be written

(Eq
as a spherical integral over a spherical density p(r) obtained by averaging the 3D density p(Z) over the solid angle,

Mrue(r) = 4m / ar'r?p(r) with (1) = - / 02 p(R(Q) - 7). (d1)

where R(2) is a rotation matrix that implements rotation by Q. The proof below then proceeds roughly as follows:
Due to the assumption that /3¢ < 1, the deprojection procedure from Sec. 3.1 becomes linear in the density p
(see the denominator of the right-hand side in Eq. (3)). As a result, averaging the inferred mass Mipferred Over the line
of sight becomes equivalent to running the deprojection procedure for a (fictitious) cluster that has a mass density
p(r). Since p is spherically symmetric, the deprojection procedure correctly infers the mass associated with p(r) which,
according to Eq. (D1), is just Miue. In the following, we work out these steps in detail.

The deprojection formulas from Sec. 3.1 are based on the observable G4 = (g4)/(X.1). As a first step, we will
show that, in the radial range where ¥/%.;y < 1, we have

Map(R)
TR

where (X) is the azimuthally-averaged surface density and the subscript ¢ in AY, indicates that this definition of
AY. applies more generally than the definition given in Eq. (6) which applies only in spherical symmetry. Assuming
spherical symmetry and ¥/%.,i; < 1, we can obtain the very similar result G = AY from Eq. (3) (with AX defined by
Eq. (6)). The important difference is that Eq. (D2) holds without any symmetry assumptions on the mass distribution.
To see this, we first consider the average (g )(R) of the reduced tangential shear g, = 74 /(1—%/Z¢it) (Bartelmann &
Schneider 2001). The average (...} can be understood as, first, separately at each position (R cos ¢, Rsin ¢) averaging
over the source redshifts z;, and then averaging azimuthally over ¢,

/ /dzsp (2| R, ) g4 (R / /dzsp zs| R, 0) v+ (R, p), (D3)

where we used the assumption X/ < 1, which implies that g becomes ;. Further, our assumption that the
source redshifts are drawn from probability distributions that do not depend on the azimuth means that p(zs|R, )
satisfies p(zs|R, ) = p(zs|R). Thus, we can pull the z integral including the factor of p(zs|R) outside the ¢ integral,

G+(R) = AZ,(R) with AZ,(R)= —(2)(R), (D2)

() (R) = / dz p(zs RS 1, - / s (R. ©)Seritts (D4)

where we also judiciously introduced factors of Yt s. Importantly, the azimuthal average of vy gives AX,
without having to assume any symmetry of the mass distribution (Kaiser 1995; Bartelmann 1995). Since AX, is a
property of only the lens, it is independent of the source redshifts z,;, and we can pull it outside the z, integral,

(94)(R) = Ay (R) - /dzsp(zis) arityts = ABg(R) - (S5540) - (D5)

This is the desired result Eq. (D2) after using the definition G = (g4)/(X i)

We note that, as discussed in Mistele & Durakovic (2024), if individual redshift estimates for the source galaxies are
available, the definition of G4 can be changed to G4 = (X¢yit,1s g+). In this case, the desired Eq. (D2) follows even
without having to assume that p(zs|R, ¢) is independent of ¢.

In any case, the input to our deprojection formulas Eq. (7) and Eq. (8) from Sec. 3.1 are now G4 (R) = AX,(R) and
fe. The first of these two deprojection formulas, Eq. (7), reduces to “A¥” = AX, in the radial range where ¥/X, is
negligible (here, “AY” is understood as the result of evaluating the right-hand side of Eq. (7), which is to be inserted
into Eq. (8). Its formal definition Eq. (6) does not apply outside spherical symmetry). This follows from Eq. (3) by
using the fact that ¥ /¥4 < 1 implies f.3 < 1 for any reasonably-behaved source redshift distribution. Thus, this
first deprojection step is trivial in the radial range where 3 /Y5y < 1. The remaining second step of the deprojection
procedure is Eq. (8) with AX, as the integrand. Specifically, the mass Minferrea We infer is

/2 /2
: — 2 T o 2 M2D(R) .
Mingerrea(r) = 4r /0 o AY, (—Sm 9) — 4r /O df <7TR2 (£)(R)

(D6)
R=cts

Here, Msp(R) is the mass enclosed in the line-of-sight cylinder with radius R, which can be written as an integral over
the azimuthally-averaged surface density (X},

w/2 R
Miptorsea(r) = 472 /0 a0 (;2 /O dR’R’(E)(R’)—(E)(R)) (D7)

R=-L

sin 0
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The right-hand side now depends only on the azimuthally-averaged surface density (¥).
Consider averaging this Minferreq Over all line-of-sight directions. This amounts to calculating

1
7/dQ Mislzferred(r)7 (DS)

where the integral over the solid angle Q corresponds to the line-of-sight average and M, denotes the mass we
infer when the underlying density is rotated by Q with respect to the original mass distribution. We refer to the
density of the rotated mass distribution as p®,

(@) = p(R(Q) - 7). (DY)

Similarly, we denote the azimuthally-averaged surface density corresponding to p* by (X). Concretely, M&erred is
given by Eq. (D7) with (X) replaced by (X)?. Let’s explicitly write out this expression for M q in terms of %,

inferre

4 / de/ / /M;‘e dR/R/ Q(R/ . R/ " ) O ( T . r y ) (Dlo)
T r/ sm9 P Ccosp, v smp, z P o CoS ©, e sin g, z .

This is linear in p* and depends on €2 only through p®. Thus, when averaging M . over the line-of-sight directions
as in Eq. (D8), we can move the ) integral past the other integrals and find

/2 ) R
—/dQ Q = 4r2/ de/dz (Rz/ dR'R'p (\/R’Q +z2) —p(\/m +z2)> (D11)
0 0
R=gr9
) /2 9 R _ _
=4r / de o / dR'R'Y(R') — X(R) , (D12)
0 R=39 s:nG
where p(r) = = [dQp(R(2) - &) as in Eq. (D1). The integrand of the 6 integral on the right-hand side is the excess
surface denswy AE(R) of a (fictitious) lens with density p evaluated at R = r/sin 6,
2 ~/2 A
QM —4 65 (=) . D1
/d mferred T /0 d sin @ ( 3)

Since that fictitious lens is spherically symmetric, the 6 deprojection integral will infer the corresponding mass M,

/dQ mferred - - 471-/ dT/ 12 (D14)

According to Eq. (D1), this is the same as Mi,ye, which is what was to be shown.

E. NFW EXTRAPOLATION

As an alternative to extrapolating G beyond the last measured data point by assuming a power law, we here
consider extrapolation assuming an NFW proﬁle In particular, we assume that, beyond the last measured data point
at R = Ruax, the shear profile G, = (g, )/(X_1,) is given by (see Eq. (3))

ASnpw (R M)
1 — fe Enpw (RIMgggic) 7

G4 (R > Ruax) = (E1)

where AYnpw (R|Magoe) and Xnpw (R|Magoe) denote, respectively, the excess surface density and surface density of
an NFW halo with a given Magg.. Explicit formulas for AXnpw and Xnpw are given, for example, in Umetsu (2020).
For simplicity, we here fix the concentration cggg. by assuming the WMAP5 mass-concentration relation from Maccio
et al. (2008), so that the NFW profiles are fully specified by Mago. alone. Choosing a different mass-concentration
relation does not significantly change our results. When extrapolating G4 using Eq. (E1), we determine Magg. by
matching to the observed shear Gy at the last data point at Ry,.x and denote the result by Miateh,

AENFVV (Rmax |M5?)3§'Ch)

G, (R = Rmax) = ’
+( @ ) 1-— fc ZNFW(RmaX|M2r8%E:Ch)

(E2)

We note that M33atch does not necessarily coincide with the cluster’s actual Mago, as inferred from the full, deprojected
mass profile M (r), hence the different notation.
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FI1G. 17.— Same as Fig. 5, but additionally showing results when extrapolating the shear profile G4 assuming an NFW profile (red
symbols) instead of assuming a 1/R power law (blue symbols). We do not show results without the two-halo subtraction for visual clarity.
Dashed gray lines are the circular velocities implied by the NFW fits from Umetsu et al. (2014), which do not take into account the two-halo
term. There is no result with NFW extrapolation for Abell 383 since no value for Msgg. can be determined from its non-parametric mass
profile (see Sec. 4.1) and we cannot switch to Mspo. because our mass-concentration relation works only for Maggc. Similarly, there is no
result with NFW extrapolation for MACS J0744 because the last G4 data point is negative, so our simple matching procedure does not
find an NFW profile to extrapolate with.

The two-halo subtraction procedure described in Sec. 3.2 and Appendix A is mostly unchanged when extrapolating
with an NFW profile. We only need to replace Eq. (A12) for the two-halo contribution to the inferred mass Ma), with

/2 r
Man(r|Magoe) = 4r? l/e 40 Axzn (sinH)

min

Omin
T match,ob Nmat h,sub
+/0 a0 (AENFW (sin@ ‘MQO?)CC ’ S) — A¥rw (s nﬂ‘ Mooe ™™ ))] - (E3)
Here, Mateh:ob ig determined by matching an NFW profile to the observed Gy (Rmax) as in Eq. (E2), and Mjpaieh-sub

is obtalned by matching an NFW profile to G4 (Rmax) minus the two-halo contribution, i.e. by matching an NFW
profile to G4 — G4 21 at R = Ryax. We note that the two-halo contribution G4 o1, depends on the actual Moo, (as
determined by the full, deprojected mass profile M (r)) through the bias factor b(z;, Mago.) (see Appendix A) and,

tch,sub
therefore, so does Moy

In practice, since it makes the code simpler and faster, we actually determine Mypar™"" from the equation
h,ob h,sub
AENFVV(-Rmax| ;(1)?)2C © S) - AE2h(-Rmax) = AENFW(-RmaX| ;r(l)gtcc = ) (E4)

If the two-halo term is negligibly small at Ry, this gives 2000 which is the correct outcome in
this case, i.e. it is what we would have obtained from matching an NFW proﬁle to G4 — G4 on at Rpmax. When the
two-halo term becomes non-negligible, we are very likely at sufficiently large radii for the difference between G4 and

AY to be unimportant (see Appendix A). Thus, in this case, the outcome will again match the outcome of matching

to G4 — G4 on. This justifies our simplified procedure for determining Mparch=ub

Figure 17 shows the cirular velocities inferred using the NFW extrapolation described above, including the adjusted
two-halo subtraction procedure. At large radii there is a small difference compared to our fiducial 1/R extrapolation.
This small difference is adequately captured by our systematic uncertainty band which is spanned by extrapolation
with 1/ VR and 1 /R? power laws. For reference, Fig. 17 also shows the circular velocities implied by the NFW fits
from Umetsu et al. (2014). These NFW fits do not take into account the two-halo term.

tch,obs match,sub
MR = M,
200c
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Fic. 18.— The best-fit parameters obtained by fitting NFW profiles to our non-parametric mass profiles M (r) from Fig. 6 (green circles)
and to our non-parametric density profiles p(r) from Fig. 9 (purple diamonds). Unlike the mass profiles M (r), the density profiles p(r) do
not contain information about the mass distribution within the smallest radial bin, leading to different fit results. No two-halo subtraction
is performed, allowing for a direct comparison to the NFW fits from Umetsu et al. (2014) (gray triangles). No uncertainties on the
concentrations are given in Umetsu et al. (2014) so these are not shown. The shaded gray region indicates the mass-concentration relation
from Dutton & Maccio (2014) for the range of redshifts of our cluster sample. Gray dashed lines indicate 0.1 dex scatter around that region.

TABLE 3
NFW FIT RESULTS
[ NFW fit to M(r) NFW fit to p(r)
Name loguj)\/lM200c €200¢ logl?\/szooc €200¢

© O]

+0.14 +2.32 +0.21 +0.66
Abell 383 14945035 6207335 | 15.02005;  0arhoss
Abell 209 15.37yp0 2635057 | 1537700, 358710
Abell 2261 1530500, 428%g5g | 1532500 5250
RXJ2129 1476Tays 574ty | 1aeoten, 08T
Abell 611 15217915 285191 | 1515+0-10 4 354223
MS2137 15175 L7et e | 15.08T01E 105757

3015 12123 +0:19 256
RXJ2248 15141015 989223 | 1561019 1 79+2:36

MACSJ1115 | 15287013  1.437857 | 15.2570 12 0.987 527
MACSJ1931 15,23%%’ 1.85}3%5 14.891{%%’2 0.71%‘%2
MACSIT0 | 15,0650 6t i | ool poidE
MACSJ0420 | 14.897010 4557508 | 14497088 o gp¥2ii
MACSJ1206 | 15.16+0-18 4007351 | 14.97+030 (g7 +0ds
MACSJ0320 | 14.067007 g 307128 | 14347058 o a¥iiad
RXJ1347 15447008 oo ¥lE | 5 0p 08D )80
MACSJOT44 | 15187001 4937280 | 15377001 g gg¥ails
MACSJ0416 | 14.097010 39716l | 15 gov0dl 47381
MACSJ1149 | 1530000 5597160 | 159,70:30 o oos i3l
MACSJOT17 | 15497007 3557008 | 15557007 48080
MACSJ0647 | 15.007009 2977526 | 15137007 o 77000
U9 015 2l 124 -19_0.26 07 194
NoOTE. — The listed values are the 16th, 50th, and 84th per-
centiles.

F. NFW FITS TO NON-PARAMETRIC MASS AND DENSITY PROFILES

We have fit NFW profiles to both our non-parametric mass profiles M (r) and our non-parametric density profiles p(r).
We loosely follow Umetsu et al. (2014) in using a Bayesian fitting procedure with flat priors for 13 < log,y Mago./ Mg <
17 and —1 < log;( c200c < 1. We use the julia package ‘Turing.jl’ (Ge et al. 2018) with the ‘Emcee()’ sampler (Foreman-
Mackey et al. 2013). For p(r), but not M (r), it can happen that the covariance matrix has a zero eigenvalue. For
example, a direct calculation shows that, in a simple setup with just two radial bins R; and Rs and linear interpolation,
it can happen that the inferred density in the first bin, p(r = Ry), is completely independent of the shear measurement
at Ry, due to a cancellation of different terms in Eq. (9). The reconstructed p values in the two radial bins are
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F1c. 19.— The missing baryonic mass implied by assuming that the galaxy-scale RAR holds also for galaxy clusters. Blue circles indicate
the radial range where X-ray and weak-lensing observations overlap. Beyond that range, we extrapolate the gas densities assuming a 1/r*
tail (gray squares). Arrowheads at the horizontal axis indicate negative missing mass. We do not subtract the two-halo term. Solid blue

and gray lines show the gas mass profiles. The solid green line indicates the best fit to M{)"iss following the fitting procedure of Kelleher &
Lelli (2024).

then 100% correlated; both are completely determined by the shear at Ro. This leads to a zero eigenvalue in the
covariance matrix. To avoid numerical issues with the inverse covariance matrix, we detect such behavior and remove
the corresponding eigenvector from the fit, leaving only the orthogonal subspace of densities to be fit. We apply
this removal procedure when the smallest eigenvalue of the correlation matrix is at least 100 times smaller than the
second-smallest eigenvalue.

The best-fit parameters are shown in Fig. 18 and Table 3. We did not apply our two-halo subtraction procedure to
allow a more direct comparison to Umetsu et al. (2014). When fitting to M (r), we find best-fit parameters consistent
with those of Umetsu et al. (2014).

However, fitting our non-parametric density profiles does not recover the same fit parameters. In particular, concen-
trations are systematically smaller when fitting p(r). In addition, the statistical uncertainties on the NFW parameters
are larger, with concentrations being particularly poorly constrained. This is because in going from M (r) to p(r) one
loses information, unless p(r) is measured all the way down to r = 0: Weak-lensing observations do not extend all the
way to the centers of clusters, so there is a minimum radius 7y, down to which we infer p(r). As a result, we cannot
reconstruct M (r) from p(r). We can only reconstruct M (r) — M (rmin), because the density p(r) at r > rpyi, does not
know anything about the mass distribution within ryi,. In contrast, the mass profile M (r) at r > ryi, does. It knows
the total amount of mass within rp;,.

There is some amount of degeneracy between concentration and mass even when fitting to M (r). This may be why
the Dutton & Maccio (2014) mass-concentration relation shown in Fig. 18 seems not to be followed very closely even
by our fits to M(r). Breaking this degeneracy may require extending the radial range covered by observations, for
example using strong lensing (e.g., Merten et al. 2015; Umetsu et al. 2016, 2025).
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F1G. 20.— Same as Fig. 19 but extrapolating the gas densities assuming the best-fit beta profiles.
G. MISSING MASS ASSUMING THE GALAXY-SCALE RAR

The galaxy-scale RAR can be parametrized as a relation between gobs and gpar with 1(|gobs|/@0) gobs = gbar, Where
p is the so-called interpolation function. We adopt the so-called “simple” interpolation function p(z) = z/(1 + z). If
we assume the galaxy-scale RAR to hold universally, the missing baryonic mass M™** is then given by

MmlSS r
EvAT) ), ('g‘“’sw ') Gobe (1) = (1) (G1)
r ap
This Mgniss must be a monotonic function of radius if the mismatch between our measurements of u(|gobs|)gobs and
Jvar is indeed due to missing baryons.

Figure 19 shows the missing mass M;™** implied by our weak-lensing analysis and assuming a 1/ r* extrapolation for
the gas densities. We do not subtract the two-halo term. Subtracting the two-halo term does not significantly change
the results. In the region where X-ray and weak-lensing observations overlap, we find that M;™*° is a monotonic
function within the uncertainties. An exception are the innermost three data points of RX J2129, which, however,
may not be reliable (Sec. 4.1). At larger radii, some clusters have non-monotonic and even negative M;™**, but the
error bars are large and often consistent with the monotonic mass profiles M, () (solid green lines, see below).

Figure 20 shows the M, lf“iss implied by assuming the beta profile fits from Famaey et al. (2025) are valid even beyond

RX . This increases gpa, at large radii, implying more non-monotonicities in Mg“iss. Famaey et al. (2025) find that,

within 1 Mpe, MM tracks the gas mass. We can confirm that result for a few clusters, for example for Abell 209 and
Abell 2261, but it does not seem to hold as univerally as for the NFW fits from Famaey et al. (2025).

The solid green lines in Fig. 19 and Fig. 20 show the best fit missing mass component M, () following Kelleher &
Lelli (2024) (Sec. 4.7). This additional mass component My, (r) is always a monotonic function of r. Despite this, the
solid green lines in Fig. 20 can be non-monotonic because they correspond to Mym(r) + (Y — 1) Mp(r) which is the
quantity that, for good fits, should match the non-parametric missing mass profiles shown there (which have T = 1).

This paper was built using the Open Journal of Astrophysics IATEX template. The OJA is a journal which provides
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