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ABSTRACT

We study the CLASH sample of galaxy clusters using a new deprojection method for weak grav-
itational lensing observations. This method is non-parametric, allowing us to infer mass profiles, or
equivalently circular velocities, without having to assume a specific halo profile. While this method
assumes spherical symmetry, we show that, on average, triaxiality is unlikely to significantly affect
our results. We use this method to study the total mass profiles of the CLASH clusters, as well
as the relation between their total and baryonic components: (1) We find that the implied circular
velocities are consistent with being approximately flat at large radii, akin to the rotation curves of
galaxies. (2) We infer radially resolved baryonic mass fractions, finding that these vary significantly
from cluster to cluster and depend strongly on the details of the X-ray gas mass profiles. Since the gas
mass profiles are poorly constrained at large radii, it is unclear whether the CLASH clusters reach the
cosmic baryon fraction expected in ΛCDM. (3) The non-parametric masses are consistent with the
stellar mass–halo mass relation expected in ΛCDM. (4) Galaxy clusters systematically deviate from
the Baryonic Tully-Fisher Relation (BTFR) and the Radial Acceleration Relation (RAR) defined by
galaxies, but the magnitude of the offset depends strongly on the gas mass extrapolation at large radii.
Contrary to some previous results based on hydrostatic equilibrium, we find that galaxy clusters may
fall on the same BTFR and RAR as galaxies if one adds a suitable positive baryonic mass component.

1. INTRODUCTION

Galaxy clusters are important astrophysical and cos-
mological probes. For example, in cosmological models
such as ΛCDM, their abundance and masses constrain
key parameters such as Ωm and σ8. They can also con-
strain models of dark matter and modified gravity, for
example through features in their density profiles such
as the splashback radius (e.g. Diemer & Kravtsov 2014;
More et al. 2015, 2016; Adhikari et al. 2018) or through
scaling relations that connect their baryonic and dynam-
ical mass distributions (e.g. Sanders 2003; Tian et al.
2020; Eckert et al. 2022; Li et al. 2023, 2024; Famaey
et al. 2025; Kelleher & Lelli 2024).

Scaling relations also play an important role in galax-
ies. Indeed, galaxies follow tight scaling relations such
as the Baryonic Tully-Fisher Relation (BTFR, McGaugh
et al. 2000; Mistele et al. 2024a) and the Radial Accel-
eration Relation (RAR, Lelli et al. 2017; Brouwer et al.
2021; Mistele et al. 2024b). These were predicted a pri-
ori by Modified Newtonian Dynamics (MOND, Milgrom
1983a,b,c, see Famaey & Durakovic 2025 for a recent re-
view), but are not easily explained in ΛCDM because
they must emerge from the complex and stochastic pro-
cess of galaxy formation. However, MOND-inspired the-
ories have historically struggled to explain why galaxy
clusters do not seem to follow the same scaling relations
as galaxies (Sanders 1999, 2003). Relativistic extension
of MOND such as Aether-Scalar Tensor Theory (AeST,

Skordis & Z losnik 2021) or Relativistic Khronon The-
ory (Blanchet & Skordis 2024) may ameliorate these is-
sues, since they predict deviations from scaling relations
such as the RAR at large masses (Mistele et al. 2023a;
Durakovic & Skordis 2024), but this has not yet been
demonstrated to work in quantitative detail.

All these different constraints require dynamical
masses of galaxy clusters. A powerful tool to measure
these is weak gravitational lensing. Indeed, unlike X-ray
and galaxy kinematics measurements, weak lensing does
not require hydrostatic or dynamical equilibrium. How-
ever, most existing weak-lensing measurements are based
on fitting weak-lensing observations to parametric pro-
files such as the Navarro-Frenk-White (NFW, Navarro
et al. 1996) profile, assuming a specific shape of the mass
profile (but see Johnston et al. 2007; Umetsu et al. 2011,
2025). An alternative is the non-parametric method from
Mistele & Durakovic (2024) which does not presume a
specific profile, allowing for less biased and more model-
independent measurements.

In the following we will use this method to infer
non-parametric mass profiles for galaxy clusters from
the Cluster Lensing and Supernova Survey with Hubble
(CLASH, Postman et al. 2012) and study their proper-
ties, including the relation between the dynamical and
baryonic mass components. In Sec. 2, we discuss the
data we use with the methods described in Sec. 3. We
present our results in Sec. 4 and after a brief discussion
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in Sec. 5 we conclude in Sec. 6.

2. DATA

We consider a subset of 20 galaxy clusters from the
CLASH project for which weak-lensing observations, pri-
marily from the Subaru Suprime-Cam, are available
(Umetsu et al. 2014). Of these, 16 were originally X-ray
selected to be massive (kT > 5 keV, listed first in Ta-
ble 1) and 4 were selected for their high lensing strength.

2.1. Weak lensing data

We adopt the azimuthally-averaged reduced shear pro-
files ⟨g+⟩, cluster redshifts zl, and the corresponding crit-
ical surface densities from Umetsu et al. (2014). The
shear profiles are given as functions of angular distances,
which we convert to projected radii R assuming a flat
ΛCDM cosmology with H0 = 70 km s−1 Mpc−1 and
Ωm = 0.27, following Umetsu et al. (2014). We adopt
this cosmology throughout this work.

The critical surface density of a given lens-source pair
is defined as,

Σ−1
crit,ls =

4πGN

c2
D(zl)D(zl, zs)

D(zs)
≡ 4πGN

c2
D(zl) · β , (1)

where GN is the Newtonian gravitational constant and
D(zl), D(zs), and D(zl, zs) are the angular diameter dis-
tances to the lens, to the source, and between the source
and the lens, respectively. For our weak-lensing anal-
ysis below, we need ⟨Σ−1

crit,ls⟩ and ⟨Σ−2
crit,ls⟩ where ⟨. . . ⟩

denotes averaging over source galaxies (see Sec. 3.1).
Umetsu et al. (2014) provide estimates for ⟨β⟩ as well
as ⟨β2⟩/⟨β⟩2 from which we infer the desired quantities
using the cluster redshift zl and the assumed cosmology.

Our weak-lensing analysis makes use of the shear pro-
files in the form G+ = ⟨g+⟩/⟨Σ−1

crit,ls⟩, which we show in

Fig. 1. The shear ⟨g+⟩ varies as a function of projected
radius while, following Umetsu et al. (2014), ⟨Σ−1

crit,ls⟩ is
assumed to be constant within a given cluster. The un-
certainties shown in Fig. 1 are discussed in Sec. 3.3.

2.2. Baryonic mass estimate

We adopt the baryonic mass estimates from Famaey
et al. (2025). These are available for 16 out of 20 clusters
in our sample (see Table 1) to which we restrict ourselves
whenever baryonic masses are required.

Famaey et al. (2025) estimate the baryonic mass pro-
file Mb(r) as a sum of the dominant contribution from
the intracluster medium, Mgas(r), and further contribu-
tions from the brightest cluster galaxy (BCG) including
companions within 50 kpc, M∗,BCG+ , (Burke et al. 2015)
as well as contributions from other galaxies, Mgal(r).

Since we are only interested in radii larger than a few
hundred kpc, we treat M∗,BCG+ as a point mass. The
galaxy contribution is given as a fraction fgal of Mgas,
i.e. Mgal(r) = fgal(r) ·Mgas(r). Following Famaey et al.
(2025), this fraction fgal is assumed to be the same across
all galaxy clusters when normalized to the radius r200c

1

1 In the following, M200c refers to the mass within the radius
r200c where the galaxy cluster’s average mass density drops to 200
times the critical density at the cluster’s redshift.

TABLE 1
Properties of the CLASH clusters we use and

quantities inferred from our weak-lensing analysis.

Name zl RX
max log10 M

2h sub
200c log10 M200c

Mpc M⊙ M⊙

Abell 383 0.187 − − −
Abell 209 0.206 0.651 15.26 ± 0.11 15.29 ± 0.12
Abell 2261 0.224 0.825 15.25 ± 0.11 15.28 ± 0.12
RXJ2129 0.234 0.591∗ 14.93 ± 0.18 14.96 ± 0.18
Abell 611 0.288 0.884 15.11 ± 0.15 15.15 ± 0.38
MS2137 0.313 0.227 15.05 ± 0.08 15.07 ± 0.08
RXJ2248 0.348 0.904 15.14 ± 0.15 15.17 ± 0.16
MACSJ1115 0.352 0.375 15.27 ± 0.18 15.32 ± 0.18
MACSJ1931 0.352 − 15.27 ± 0.46 15.33 ± 0.31
RXJ1532 0.363 − 14.58 ± 0.24 14.60 ± 0.25
MACSJ1720 0.391 0.532 15.04 ± 0.15 15.07 ± 0.11
MACSJ0429 0.399 0.292 15.02 ± 0.23 15.06 ± 0.24
MACSJ1206 0.440 0.930 15.17 ± 0.17 15.22 ± 0.17
MACSJ0329 0.450 0.377 14.79 ± 0.20 14.83 ± 0.23
RXJ1347 0.451 0.887 15.41 ± 0.11 15.44 ± 0.12
MACSJ0744 0.686 0.884 15.17 ± 0.13 15.19 ± 0.14
MACSJ0416 0.396 0.449 14.92 ± 0.09 14.94 ± 0.09
MACSJ1149 0.544 0.557 15.38 ± 0.10 15.42 ± 0.10
MACSJ0717 0.548 − 15.32 ± 0.08 15.35 ± 0.08
MACSJ0647 0.584 0.381 14.94 ± 0.13 14.97 ± 0.13

Note. — RX
max denotes the radial extent of the X-ray data

used in Donahue et al. (2014). ∗The exception is RX J2129
where Famaey et al. (2025) redid the fit with a smaller radial
range than the RX

max listed in Donahue et al. (2014). Miss-
ing RX

max values indicate that a baryonic mass estimate from
Famaey et al. (2025) is not available. The masses M200c are
missing for Abell 383 due to the uptick in the non-parametric
mass profile (see Fig. 6).

(that we measure from weak gravitational lensing, see be-
low).2 Values of fgal typically reach O(1) at r ≲ 0.1 Mpc
and drop to about 8% or 12% beyond r200c, depending on
how we extrapolate the gas density profiles (see below).
This simple procedure doesn’t allow precise quantitative
statements about Mb, but suffices for our purposes.

The dominant contribution Mgas(r) is obtained by fit-
ting double-beta profiles to X-ray observations,

ρgas(r) = n0

(
r

r0

)−α
(

1 +

(
r

re,0

)2
)− 3β0

2

+ n1

(
1 +

(
r

re,1

)2
)− 3β1

2

, (2)

with free parameters n0, r0, α, re,0, β0, n1, re,1, and β1.
We adopt the fit results from Famaey et al. (2025). Most
of these are originally from Laudato et al. (2022) based
on data from Donahue et al. (2014), but Famaey et al.
(2025) redid them for a few clusters for which the implied
gas masses were unreasonably small.

The underlying Chandra X-ray observations to which
these beta profiles were fit become noisy at large radii.
Therefore, Donahue et al. (2014) considered only data
out to a maximum radius RX

max, which is determined by
requiring at least 1500 counts of photon signal in each
radial bin. In the following, we assume that the beta

2 Specifically, Famaey et al. (2025) measure fgal for MACS J1206

and adopt fgal(r) = fgal,J1206
(
r · r200c,J1206/r200c

)
for the other

clusters. Beyond the last measured data point, fgal,J1206 is as-
sumed to remain constant at the last measured value.
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Fig. 1.— The reduced shear in terms of G+ = ⟨g+⟩/⟨Σ−1
crit⟩ for the 20 CLASH clusters from Umetsu et al. (2014). The error bars include

contributions from the reduced shear ⟨g+⟩, the inverse critical surface density ⟨Σ−1
crit⟩, and from the LSS, see Sec. 3.3.

Fig. 2.— The gas density of Abell 209 implied by the double beta
fit from Famaey et al. (2025). The vertical dashed line indicates
RX

max, i.e. how far out this fit is reliable. We show two different
ways of extrapolating beyond RX

max: Assuming the best-fit param-
eters to be valid even beyond RX

max (solid blue line) and assuming
a 1/r4 tail (dashed red line).

profile fits are reliable up to RX
max

3. At larger radii, be-
yond RX

max, we consider two options: 1) We assume that
the best fit parameters remain valid even at large radii
where they were not well constrained by observations and
2) we assume that the beta profiles are matched to a 1/r4

tail at r = RX
max.

The 1/r4 tail has two motivations. If we require a
finite total gas mass, we need a gas density that asymp-
totically decays faster than 1/r3 so 1/r4 is perhaps a

3 In the fits they redid, Famaey et al. (2025) did not impose the
1500 photon count requirement and so used X-ray observations
out to larger radii for some clusters. However, since this additional
data is quite noisy, it still makes sense to adopt RX

max from Donahue
et al. (2014) as an estimate of how far out to trust the beta profile
fits.

Fig. 3.— The radius RX
max out to which the double beta profile

fits of the gas densities are well constrained by observations versus
the total gas mass. Circles correspond to assuming a 1/r4 density
tail after RX

max. The two clear outliers, MS 2137 and MACS J0429,
are shown as gray diamonds. Crosses correspond to assuming that
the best-fit beta profiles remain valid even beyond RX

max.

natural choice. Also, 1/r4 is the asymptotic behavior of
isothermal spheres in MOND (Milgrom 1984).

The 1/r4 matching procedure is illustrated in Fig. 2.
Beyond RX

max, we set β0 = (4 − α)/3 and β1 = 4/3 to
ensure an asymptotic 1/r4 decay and we adjust n0 and
n1 such that the n0 and n1 components of ρgas are both
continuous. In practice, RX

max is quite small for some
clusters (see Table 1). Thus, even if 1/r4 is the correct
asymptotic behavior, one may worry that RX

max is not
yet in that asymptotic regime, so that matching to a
1/r4 tail at RX

max may underestimate the true gas mass.
In that case one would expect our 1/r4 extrapolation to
artificially induce a positive correlation between gas mass
and RX

max.
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To assess this effect, the white circles in Fig. 3 show
the total gas mass implied by our 1/r4 matching proce-
dure versus the radial range of the X-ray observations
RX

max. For comparison, the gray crosses in Fig. 3 corre-
spond to assuming that the best-fit beta profiles remain
valid even beyond RX

max with the gas mass evaluated at
r = r200c (see Sec. 4.5). We see that assuming a 1/r4 tail
induces only a weak additional correlation between the
total gas mass and RX

max, though there are two clear out-
liers MS 2137 and MACS J0429, which have the small-
est gas masses in our sample, and two borderline cases
MACS J0329 and MACS J1115, with the 3rd and 4th
lowest gas masses. Quantitatively, with our 1/r4 extrap-
olation, Pearson’s r is 0.82 for the full sample and drops
to 0.43 with the two outliers and the two borderline cases
removed. With the best-fit extrapolation, Pearson’s r
is 0.66. This suggests that, if 1/r4 is indeed the cor-
rect asymptotic behavior, it is overall not unreasonable
to match to a 1/r4 tail at RX

max. The gas masses for
the two outliers are, however, likely to be significantly
underestimated and we consider them separately below.
The gas masses of clusters with RX

max similar to the two
borderline cases may also be somewhat underestimated
but we do not treat them separately.

Recently, the XMM Cluster Outskirts Project (X-
COP, Eckert et al. 2017; Ghirardini et al. 2019) has con-
strained the gas densities of 12 galaxy clusters out to
about r200c (for earlier measurements at large radii using
the Suzaku satellite, see Walker et al. 2013, 2012; Urban
et al. 2014). They find density profiles that steepen with
radius. In fact, their density profiles become steeper than
the asymptotic behavior of many of the best-fit beta pro-
files from Famaey et al. (2025), though not as steep as
1/r4. This suggests that the true asymptotic behavior of
the gas profiles is in between the two extrapolations we
use. In any case, the point of adopting multiple different
extrapolations is to illustrate a range of possibilities, not
to give a precise quantitative result.

3. METHOD

3.1. Weak-lensing mass profile measurements

Weak-lensing observations of a lens l, in our case a
galaxy cluster, are based on the shapes of many back-
ground source galaxies s. From these shapes and the
position angle between the sources and the lens, one can
infer the azimuthally-averaged tangential reduced shear
⟨gt⟩ (Bartelmann & Schneider 2001), which encodes the
cluster’s projected mass distribution. Indeed, assuming
spherical symmetry, we have to a good approximation
(Umetsu 2020; Mistele & Durakovic 2024)

G+(R) =
∆Σ(R)

1 − fc(R)Σ(R)
, (3)

where R is the projected radius, G+ is the azimuthally-
averaged reduced tangential shear divided by the
azimuthally-averaged inverse critical surface density,

G+ ≡ ⟨g+⟩
⟨Σ−1

crit,ls⟩
, (4)

and fc refers to the following ratio of azimuthal averages
of powers of the critical surface density,

fc =
⟨Σ−2

crit,ls⟩
⟨Σ−1

crit,ls⟩
. (5)

Further, Σ and ∆Σ are, respectively, the surface mass
density and the excess surface mass density of the cluster.
The excess surface density is defined as

∆Σ(R) =
M2D(R)

πR2
− Σ(R) , (6)

where M2D(R) is the mass enclosed by a cylinder with
radius R that is oriented along the line of sight.

We will be interested in the deprojected, 3D mass pro-
file M(r). To convert observations of the shear G+ and
the critical surface density fc into the 3D mass M , we as-
sume spherical symmetry and use the deprojection tech-
nique of Mistele & Durakovic (2024) (see also Mistele
et al. 2024b,a). This technique is based on Eq. (3) and
consists of two steps. First, we convert G+ and fc into
an excess surface density ∆Σ,

∆Σ(R) =
G+(R)

1 − fcG+(R)

× exp

(
−
∫ ∞

R

dR′ 2

R′
fcG+(R′)

1 − fcG+(R′)

)
. (7)

This step is only important at relatively small radii where
the fcΣ term in the denominator of Eq. (3) is not negli-
gible. This roughly corresponds to Σ/Σcrit, also known
as the convergence κ, not being negligible. In contrast,
at large radii where Σ/Σcrit is small, Eq. (7) reduces to
G+ = ∆Σ. The second step is to convert ∆Σ(R) from
Eq. (7) into the 3D mass profile M(r),

M(r) = 4r2
∫ π/2

0

dθ∆Σ
( r

sin θ

)
. (8)

Equation (7) is mathematically valid as long as G+fc <
1. This roughly corresponds to the condition that we are
in the weak-lensing regime (Mistele & Durakovic 2024).
Equation (7) further assumes that the critical surface
density, i.e. fc, is constant as a function of projected
radius R. Mistele & Durakovic (2024) also provide for-
mulas for the case with a radially varying fc. A constant
fc is, however, often a reasonable assumption in prac-
tice and, following Umetsu et al. (2014), we adopt that
assumption here.

For the integrals in the above deprojection formulas,
we need to know the function G+(R) at all radii out to
infinity, whereas, in practice, we measure G+ only in a
discrete set of radial bins out to some outermost bin with
bin center Rmax. Thus, we must interpolate between the
discrete radial bins and extrapolate beyond Rmax. In
practice, the effect of the interpolation on the inferred
M(r) is quite minor and the extrapolation is unimpor-
tant except when r is close to the last measured data
point at Rmax. As a result, the choices we make about
how to extrapolate and interpolate are unimportant over
much of the radial range we consider (Mistele & Du-
rakovic 2024; Mistele et al. 2024b,a).

To be specific, we extrapolate assuming that G+ fol-
lows a 1/R power law beyond Rmax and we linearly in-
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terpolate the discrete G+ measurements in logarithmic
space. We take the uncertainty in these choices into ac-
count as systematic uncertainties, see Sec. 3.3. In Ap-
pendix E, we show that extrapolating G+ assuming an
NFW profile instead of a 1/R power law does not sig-
nificantly change our results, further confirming that our
systematic uncertainty estimate is reasonable.

The above procedure is straightforward to implement
numerically and runs fast, taking only a few milliseconds
per galaxy cluster. We use the code provided by Mistele
& Durakovic (2024)4 to implement Eq. (7) and Eq. (8) as
well as the propagation of uncertainties and covariances
discussed in Sec. 3.3 below.

3.2. Two-halo term

The deprojection technique discussed in Sec. 3.1 as-
sumes that all of the lensing signal is due to the clus-
ter itself. This is a good approximation at small and
moderate radii. Beyond a few Mpc, however, the signal
from the cluster’s local environment, the so-called two-
halo term, can become important (Umetsu 2020; Oguri
& Hamana 2011; Oguri & Takada 2011).

Within ΛCDM, we can estimate this contribution and
subtract it. The resulting subtracted mass profiles should
be a better estimate of the true mass profiles, but are
more model-dependent. Below we present results with
and without this two-halo subtraction, but the difference
turns out not to be important for our purposes. We
explain the details of our two-halo subtraction procedure
in Appendix A.

3.3. Uncertainties and covariances

We consider two sources of systematic uncertainties,
corresponding to our choices of how to extrapolate G+

beyond the last measured data point and of how to in-
terpolate between the discrete radial bins. For the sta-
tistical uncertainties, we take into account uncertainties
in the shear measurements ⟨g+⟩, as well as uncertainties
and covariances from the inverse critical surface densities
⟨Σ−1

crit⟩, and covariances induced by the large-scale struc-
ture (LSS, Hoekstra 2003). We use linear error propaga-
tion to propagate the statistical uncertainties and covari-
ances into the reconstructed mass profiles. As a result,
any shortcomings in our uncertainty and covariance es-
timates affect only the error bars of the reconstructed
mass profiles; they do not enter the central values. The
details are discussed in Appendix B.

3.4. Non-parametric density reconstruction

One way to obtain a 3D density profile ρ(r) in a non-
parametric way is to first reconstruct the 3D mass profile
M(r) following Sec. 3.1 and then take a numerical deriva-
tive, ρ(r) = M ′(r)/4πr2. However, numerical derivatives
can be tricky. Thus, we here introduce a density recon-
struction method that goes directly from shear to density
without any numerical derivatives.

Specifically, as we show in Appendix C, assuming

4 https://github.com/tmistele/SphericalClusterMass.jl

spherical symmetry we have5

ρ(r) =
I1(r) + I2(r)

πr
, (9)

with

I1(r) =

∫ π/2

0

dθ
∆Σ

(
r

sin θ

)
− ∆Σ(r)

cos2 θ
, (10)

I2(r) = 2

∫ π/2

0

dθ ∆Σ
( r

sin θ

)
. (11)

This replaces the second step Eq. (8) in the reconstruc-
tion method from Sec. 3.1, i.e. the step that converts ∆Σ
to M . The first step, Eq. (7), which converts the shear
G+ to ∆Σ, remains the same. The integrand of Eq. (10)
is finite everywhere despite the 1/ cos2 θ factor. This can
be seen by expanding around θ = π/2.

While this non-parametric density reconstruction does
not involve numerical derivatives, it still requires rel-
atively low-noise data for good results due to the fi-
nite difference ∆Σ(r/ sin θ) − ∆Σ(r) in the numerator
in Eq. (10). Indeed, the 1/ cos2 θ up-weights precisely
the region θ ≈ π/2 of the integral where ∆Σ(r/ sin θ)
and ∆Σ(r) are close to each other so that the differ-
ence becomes small. Despite this, initial tests with mock
data show that, at least in some situations, the non-
parametric density reconstruction method Eq. (9) is bet-
ter behaved than taking a numerical derivative of the
non-parametric mass profile from Sec. 3.1.

It should be possible to adjust the two-halo subtraction
procedure from Sec. 3.2 to work with this non-parametric
density reconstruction method. This is left for dedicated
follow-up work.

3.5. On the assumption of spherical symmetry

Our non-parametric deprojection method assumes
spherical symmetry. As we will now discuss, this assump-
tion can be relaxed in some important ways, making the
method more widely applicable and more robust.

First, consider clusters that are approximately spheri-
cally symmetric at large radii but whose inner regions are
more complex. Examples may be late-stage mergers or
clusters with a complex baryonic mass distribution. As
expected, our deprojection method does not work well
in the inner regions of such clusters due to the lack of
symmetry. However, perhaps surprisingly, the method
does infer the correct enclosed mass at larger radii, out-
side the non-symmetric core (Mistele & Durakovic 2024).
Thus, unlike methods based on fitting NFW or similar
profiles, our method will not be thrown off by complexity
or non-symmetry at small radii.

A related useful property of our deprojection method
is that mass measurements at large radii (beyond a few
times the miscentering offset) are not affected much by
miscentering. This is because the effect of miscentering is
essentially to induce non-symmetry at small radii, while
keeping approximate spherical symmetry at large radii.

5 The factor of 1/π may be reminiscent of the Abel trans-

form, ρ(r) = −π−1
∫∞
r dRΣ′(R)/

√
R2 − r2. Indeed, the Abel

transform can be written in an alternative way that looks quite
similar to Eq. (9) and contains no derivatives of Σ: ρ(r) =

−(πr)−1
∫ π/2
0 dθ 1

cos2 θ

(
Σ
(

r
sin θ

)
− Σ(r)

)
.

https://github.com/tmistele/SphericalClusterMass.jl
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Fig. 4.— The mass profile of a prolate SIS, inferred from
its reduced shear using our non-parametric deprojection method
(Sec. 3.1), relative to the true mass profile (see Eq. (12)) for differ-
ent orientations of the line of sight. When averaged over all line of
sight orientations, the inferred mass matches the true mass at large
radii where Σ/Σcrit is negligible. At small radii, the non-linearity
due to Σ/Σcrit (see Eq. (3)) induces a small deviation from unity.
Our choice of Σcrit maximizes this non-linear effect. The tiny but
perceptible uptick at the largest radii shown is an edge effect (see
the main text).

In addition, there is a way to efficiently correct for resid-
ual miscentering effects. Below, we do not consider any
miscentering effects, so for brevity we refer the reader to
Mistele & Durakovic (2024) for details.

Finally, as we will now argue, our method works well,
on average, even for triaxial mass distributions such as
dark matter halos in ΛCDM (e.g., Bonamigo et al. 2015;
Jing & Suto 2002). The important caveat here is “on
average”. Indeed, the mass inferred by our deprojection
method for an individual triaxial halo can be off by a few
10%. This is illustrated by the gray lines in Fig. 4 for a
prolate singular isothermal sphere (SIS).

Concretely, Fig. 4 assumes a 3D density ρ(x, y, z) =

ρSIS(
√

(x′2 + y′2)/a2 + z′2/c2) where the coordinates
x, y, z and x′, y′, z′ are related by a rotation that de-
termines the orientation of the line-of-sight and where
ρSIS(r) ∝ 1/r2. We use the formulas from Tessore &
Metcalf (2015) to calculate the reduced shear assum-
ing, for simplicity, a single source plane with a constant
Σcrit = 1750M⊙/pc2. We adopt c =

√
2, a = 1/

√
2, and

choose the prefactor of ρSIS such that, with c = a = 1,
the mass within 1 Mpc is 1015 M⊙. The inferred mass
Minferred is calculated by applying the deprojection for-
mulas Eq. (7) and Eq. (8) to the reduced shear. The
true mass Mtrue is calculated from Eq. (12) (see below).
Our choice of Σcrit is as small as possible, given that we
are assuming weak lensing (we enforce G+fc < 1 in the
radial range of Fig. 4, see Sec. 3.1). This maximizes the
non-linear effect at small radii discussed below.

The inferred mass Minferred depends on how the halo is
oriented relative to the line of sight (gray lines in Fig. 4).
However, after averaging over all line of sight orienta-
tions, Minfered becomes very close to the true mass Mtrue

(see the blue symbols in Fig. 4), where Mtrue is defined
as the mass enclosed in a sphere with radius r,

Mtrue(r) ≡
∫
|x⃗′|<r

d3x⃗′ ρ(x⃗′) . (12)

In fact, at sufficiently large radii, the line of sight average
of Minferred is exactly Mtrue. Sufficiently large radii here
means radii where Σ/Σcrit ≪ 1, which is usually a good
approximation beyond a few hundred kpc. We prove this
result in Appendix D and show that it holds for any mass
distribution, not just triaxial ones (in the radial range
where Σ/Σcrit ≪ 1). The proof only requires one mild
and reasonable additional assumption on the redshift dis-
tribution of the source galaxy population. At small radii,
line-of-sight averaging does not exactly recover the true
mass profile due to the non-linearity induced by Σ/Σcrit

(see Eq. (3)), but that effect seems to be quite mild in
practice (Fig. 4).

Thus, on average, we expect our inferred mass profiles
to be very close to the true mass profiles even for tri-
axial halos. This is important for statistical analyses of
large samples of galaxy clusters, for example for cluster
cosmology. This is particularly true for analyses based
on quantities like M200c, since these correspond to rela-
tively large radii where Σ/Σcrit is small. This result may
in principle change if the line-of-sight average is incom-
plete, for example due to intrinsic alignments or due to
selection effects. We expect such effects to be relatively
minor, but leave a detailed study for future work.

Figure 4 shows a tiny but perceptible deviation from
unity at the largest radii. This is an edge effect due
to our choice of extrapolating G+ beyond the last data
point assuming a 1/R decay (see Sec. 3.1) which is not
exactly true here. Such effects are taken into account in
our systematic error estimate (see Sec. 3.3).

4. RESULTS

4.1. Circular velocities and total mass profiles

Figure 5 and Fig. 6 show the non-parametric mass
profiles inferred using our non-parametric deprojection
method in terms of the implied circular velocities Vc(r) =√

GM(r)/r and in terms of M(r), respectively. We show
results with the ΛCDM two-halo contribution subtracted
(blue symbols, see Sec. 3.2) and without this subtraction
(gray symbols). The light blue band indicates systematic
uncertainties due to having to interpolate and extrapo-
late the observed shear profiles (Sec. 3.3). They become
important only close to the last data point. Neighbor-
ing data points in Fig. 5 and Fig. 6 are correlated (see
Sec. 3.3, Appendix B, and Fig. 16).

The circular velocities are remarkably flat, with no
clear indication of a decline at large radii. This is rem-
iniscent of galaxy rotation curves and perhaps indicates
a universal pattern. The approximate flatness was previ-
ously noted in Donahue et al. (2014). In contrast to our
analysis, Donahue et al. (2014) assumed a parametric
NFW profile and did not subtract the two-halo contri-
bution. Asymptotically, the circular velocities implied
by NFW halos decay like

√
ln(r)/r and so we should

not expect to see asymptotically flat circular velocities in
ΛCDM. However, due to the relatively small concentra-
tions of the dark matter halos of massive galaxy clusters
and the limited radial range probed, our results are not
very sensitive to this expected asymptotic decline.

In terms of the total mass M200c, our non-parametric
method gives results that are compatible with the NFW
fits from Umetsu et al. (2014). There is a small and
expected shift towards smaller masses (Fig. 7, left, see
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Fig. 5.— The circular velocities Vc =
√

GM(r)/r inferred from the shear profile shown in Fig. 1 using our non-parametric deprojection
method (Sec. 3.1). Results after subtracting the two-halo term are in blue, unsubtracted results are in gray. The two-halo subtraction is
based on M200c (see Sec. 3.2) for all clusters except Abell 383, where we use M500c instead, because no value for M200c can be determined
due to the uptick at large radii. The light blue band indicates the systematic uncertainties due to choices in how to interpolate and
extrapolate the shear profiles (Sec. 3.3). Error bars indicate the statistical uncertainties.

Fig. 6.— Same as Fig. 5 but in terms of masses M(r). Arrows at the horizontal axis indicate negative inferred masses.
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Fig. 7.— Our non-parametric M200c measurements compared to
the M200c implied by the NFW fits from Umetsu et al. (2014) with
(left) and without (right) the two-halo term subtracted (Sec. 3.2).
The NFW fits from Umetsu et al. (2014) do not take into account
the two-halo term. Abell 383 is excluded because no value of M200c
could be determined (see Fig. 6). Error bars indicate statistical
uncertainties.

also Table 1) because Umetsu et al. (2014) did not take
into account the two-halo term. Indeed, if we turn off
our two-halo subtraction procedure, there is no longer a
significant shift (Fig. 7, right). Figure 7 also shows that
our uncertainties on M200c are only moderately larger
than those from Umetsu et al. (2014), despite making
significantly fewer assumptions. On average, our statis-
tical uncertainties are larger by 36% in the case without
two-halo subtraction. This average and Fig. 7 do not in-
clude Abell 383 because we could not determine a value
of M200c due to the uptick at large radii (see Fig. 6).

Nevertheless, an NFW profile is not a great fit for all
clusters. For example, the NFW fit from Umetsu et al.
(2014) for RX J2129 seems to indicate a clearly declining
circular velocity beyond ∼ 0.5 Mpc (Donahue et al. 2014,
see also Fig. 8). In contrast, our non-parametric mass
profile implies a monotonic rise in the range (0.5−2) Mpc.
Inspection of Fig. 8 and the corresponding shear profile
in Fig. 1 suggests that the NFW fit is thrown off by the
data points at small radii, where the shear profile (and
our non-parametric mass profile) show a clear change of
behavior. The reason for this qualitative change in be-
havior may simply be statistical fluctuations or it may be
real complexity in the lens’ mass distribution that is not
captured by the simple NFW model. RX J2129 is classi-
fied as relaxed (Donahue et al. 2016), but this does not
necessarily preclude any significant non-symmetric struc-
tures in its center. For example, the temperature profile
is not well described by an isothermal profile (Jiménez-
Teja et al. 2024) and, using additional strong- and weak-
lensing data from Hubble, Merten et al. (2015) noted
some interesting morphology in the core of RX J2129.
The assumption of spherical symmetry may also be vio-
lated in other clusters which are known ongoing mergers
with complex X-ray emission, for example MACS J0717
(Ma et al. 2009) and MACS J0416 (Mann & Ebeling
2012).

In any case, this highlights an important advantage of
our non-parametric method: Its mass estimates at large
radii are not thrown off by complexity in the inner re-
gions of a galaxy cluster. This is discussed in detail in
Sec. 3.5 and in Mistele & Durakovic (2024). To be clear,
if the mass distribution in the inner regions of, e.g., RX
J2129 is highly non-symmetric, then our non-parametric
method cannot be trusted either at these small radii.
However, unlike an NFW fit, our inferred mass at larger

Fig. 8.— The circular velocity of RX J2129 as in Fig. 5, with
the two-halo term subtracted, (blue) and the circular velocity im-
plied by the NFW fit from Umetsu et al. (2014) (gray). A similar
comparison for the other clusters can be found in Fig. 17 in Ap-
pendix E.

radii will still be correct in such cases.
In contrast to NFW halos, asymptotically flat circular

velocities are a prediction of alternative proposals such as
MOND and, to varying degrees (Mistele et al. 2023a,b;
Durakovic & Skordis 2024), its relativistic completions
(e.g. Skordis & Z losnik 2021; Blanchet & Skordis 2024;
Berezhiani & Khoury 2015). Qualitatively, our circular
velocities are consistent with that prediction. However,
the precise predictions of these models depend strongly
on the baryonic mass distribution. Previous studies find
that MOND-like theories underpredict the observed cir-
cular velocities of galaxy clusters, given their baryonic
mass (for some recent works see, e.g., Li et al. 2023, 2024;
Famaey et al. 2025; Tian et al. 2020; Kelleher & Lelli
2024; Ettori et al. 2019; Eckert et al. 2022). That said,
the fact that the observed circular velocities of clusters
seem to be approximately flat enables a potential solu-
tion to this discrepancy in terms of a missing baryonic
mass component located at relatively small radii. We
discuss this more in Sec. 4.7.

We note that our two-halo subtraction procedure is
specific to ΛCDM and may not apply in other theories.
Unfortunately, due to their inherent non-linearity (but
see Milgrom 2025), reliably estimating the two-halo con-
tribution in MOND-inspired theories is challenging. To
the best of our knowledge, no such estimates are cur-
rently available. One specific non-linear effect that would
have to be taken into account is the so-called external
field effect (Bekenstein & Milgrom 1984; Haghi et al.
2016; Chae et al. 2020, 2021) which may play a role
at large radii in galaxy clusters (Kelleher & Lelli 2024).
Since the effect of the ΛCDM two-halo term on our re-
sults is quite modest, we might expect the same to be
true for MOND-like theories. Properly addressing this
question will, however, require simulations of structure
formation in relativistic models such as AeST.

4.2. Density profiles

Figure 9 shows the 3D density profiles inferred using
the non-parametric method from Sec. 3.4. This method
is mathematically equivalent to taking the derivative of
the non-parametric mass profiles M(r) from Sec. 3.1 and
dividing by 4πr2. The integral form Eq. (9) may, how-
ever, be preferable in practice because it avoids numer-
ical derivatives. Nevertheless, reconstructing good den-
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Fig. 9.— The 3D density profiles inferred using the non-parametric deprojection method from Sec. 3.4. For simplicity, no two-halo term
is subtracted. Negative inferred densities are indicated by arrowheads at the horizontal axis. As in Fig. 5, light bands indicate systematic
uncertainties from extrapolating and interpolating the shear profiles. Error bars indicate statistical uncertainties. Dashed gray lines show
the densities implied by the NFW fits from Umetsu et al. (2014).

sity profiles requires much smaller statistical uncertain-
ties than reconstructing good mass profiles. Indeed, for
some clusters, such as Abell 209 or Abell 2261, the recon-
structed densities look reasonable, but Fig. 9 also shows
large fluctuations and even negative inferred densities.

That said, while the negative densities in Fig. 9 are
likely just fluctuations, our deprojection method can
properly handle negative densities. This is important
for theoretical models where negative densities are real
physical effects. Examples are the ghost condensate in
AeST (Mistele et al. 2023a) and the “phantom dark mat-
ter” in some modified gravity models (Milgrom 1986).

Figure 9 also shows the NFW density profiles from
Umetsu et al. (2014). These were obtained by fitting the
weak-lensing convergence profile plus the average conver-
gence in the cluster center and match our non-parametric
density profiles reasonably well. As a further cross-check,
we have fit NFW profiles to both our non-parametric
mass and density profiles, finding results consistent with
expectations, see Appendix F.

4.3. Cosmic baryon fraction

The baryon fraction Ωb/Ωm ≈ 0.16 (Aghanim et al.
2020) plays an important role in cosmology. One may
expect that this cosmic baryon fraction is consistent with
the ratio fb ≡ Mb/(Mb + MDM) in a gravitationally
collapsed structure with dark matter mass MDM (e.g.,
Planelles et al. 2013; Angelinelli et al. 2023; Rasia et al.
2025). This expectation is not realized in galaxies, where
a much lower baryon fraction is detected. In contrast,
measurements of galaxy clusters at large radii seem to de-
tect most of the expected baryons (e.g., McGaugh et al.
2010; Wicker et al. 2023; Mantz et al. 2022).

Figures 10 and 11 show the baryon fraction implied by
our analysis as a function of radius. The two-halo term is

subtracted (Sec. 3.2). Our estimate of fb is most reliable
where X-ray and weak-lensing observations overlap (blue
lines and symbols). In this radial range, most clusters in
our sample have an fb well below the cosmic 0.16.

At larger radii (gray lines and symbols), our results
depend strongly on how we extrapolate the gas densi-
ties beyond the radius RX

max where the beta-profile fits
from Famaey et al. (2025) were well constrained by X-
ray observations. If we assume a 1/r4 density tail (see
Sec. 2.2), most clusters remain well below the cosmic
baryon fraction even at large radii. This remains true
even if we ignore the two clusters where RX

max is likely
too small to make a reliable estimate of the gas mass at
large radii (diamond symbols). This is consistent with
the expectations for a MOND isothermal sphere, which
is one motivation behind considering a 1/r4 tail.

On the other hand, if we extrapolate the gas densities
by taking the beta profile fits at face value even at large
radii, where they were not well constrained by observa-
tions, fb tends to increase with radius, with several clus-
ters getting close to the cosmic baryon fraction around
r200c. That matches expectations from ΛCDM, but we
caution that the beta profiles from Famaey et al. (2025)
may underestimate the steepness of the gas density pro-
files at such large radii (see Sec. 2.2).

Beyond r200c (dashed gray lines), the fb of some clus-
ters grow significantly beyond the cosmic baryon fraction
when taking the beta profile fits at face value. However,
the relative uncertainties become quite large at these ex-
treme radii, so this effect is likely not significant.

4.4. Stellar mass–halo mass relation

Figure 12 shows the stellar–mass halo mass (SMHM)
relation implied by our non-parametric mass profiles. We
exclude Abell 383 because, as discussed above, we cannot
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Fig. 10.— The baryon fraction Mb(r)/M(r) implied by our non-parametric mass profiles as a function of radius. Blue lines indicate the
radial range where weak-lensing and X-ray observations overlap, solid gray lines indicate radii beyond that but below r200c, and dashed
gray lines indicate radii beyond r200c. We subtract the ΛCDM two-halo term (Sec. 3.2). We extrapolate the gas density profiles beyond
RX

max assuming a 1/r4 tail (left) and assuming the beta profile fits remain valid even at large radii where they were not well constrained by
observations (right). Gray diamonds indicate the two clusters with the smallest RX

max whose baryonic masses are likely to be underestimated
with the 1/r4 extrapolation.

Fig. 11.— Same as Fig. 10 but separately for each cluster. Error bars indicate the statistical uncertainties. For each cluster, we show
results assuming a 1/r4 gas density tail beyond RX

max (smaller values of fb, as in the left panel of Fig. 10) and assuming that the best-fit
beta profiles remain valid even beyond RX

max (larger values of fb, as in the right panel of Fig. 10).

determine a value of M200c. We include RX J1532, whose
BCG’s stellar mass M∗,BCG is not provided by Famaey
et al. (2025), adopting its M∗,BCG directly from Burke
et al. (2015).

We find very little correlation between M∗,BCG and
M200c (Burke et al. 2015). This may seem unexpected
because, in ΛCDM, a strong correlation between these
two quantities should exist. However, our cluster sample
covers a relatively narrow range in total mass, so that

what we see in Fig. 12 may simply be the scatter in stel-
lar mass at an essentially fixed M200c. This scatter is
expected to be around 0.2 dex. Since the CLASH clus-
ters cover a range of redshifts, the redshift evolution of
the SMHM relation may add to the expected scatter.
With these considerations, the Moster et al. (2013) re-
lation seems roughly consistent with our results (dashed
gray lines in Fig. 12). As a further check, we have gen-
erated simple mock data from the Moster et al. (2013)



11

Fig. 12.— The SMHM relation implied by our non-parametric
mass profiles (white symbols). The shaded gray region indicates
the Moster et al. (2013) relation in the redshift range of our cluster
sample. Dashed gray lines indicate 0.2 dex scatter in the direction
of M∗,MBCG

around that region. Gray crosses show simple mock
data generated from the Moster et al. (2013) relation.

relation at z = 0.4, close to the mean zl of our CLASH
sample. In particular, we generated 250 equally-spaced
log10 M200c/M⊙ values between 10 and 16.5, calculated
M∗,BCG according to the Moster et al. (2013) relation
at z = 0.4, then added, respectively, 0.1 dex and 0.2 dex
noise to M200c and M∗,BCG, and finally applied a cut
14.6 < log10 M200c/M⊙ < 15.5. These mock data also
seem consistent with our results (Fig. 12).

This is in contrast to massive spiral galaxies where the
Moster et al. (2013) relation is in conflict with observa-
tions (e.g., Di Cintio & Lelli 2016). We also considered
the SMHM relation from Kravtsov et al. (2018), finding
that it is significantly offset from our measurements to-
wards higher M∗,BCG. However, the BCG stellar masses
in Kravtsov et al. (2018) are defined to include stellar
mass within many hundred kpc, including contributions
from the intracluster light, and are in fact extrapolated
to infinity. This contrasts with Burke et al. (2015) who
measured M∗,BCG within 50 kpc, which may explain the
offset compared to Kravtsov et al. (2018).

4.5. BTFR

The BTFR relates the asymptotic flat circular velocity
Vflat to the total baryonic mass Mb. In Sec. 4.1, we saw
that the circular velocities of the CLASH clusters are
approximately flat. Thus, for simplicity we define Vflat

as the weighted average of the circular velocities Vc for

750 kpc < r < 3 Mpc , (13)

with weights given by the inverse squares of the statistical
uncertainties. The circular velocities from Sec. 4.1 are
not perfectly flat, so our Vflat will change somewhat if
we choose a different radial range. We have verified that
this effect is relatively minor and that other reasonable
choices do not change our conclusions.

Regarding the second ingredient of the BTFR, the total
baryonic mass Mb, we face the issue that the gas masses
Mgas(r) implied by the double beta fits from Famaey
et al. (2025) are divergent. This is not an issue for the
1/r4 extrapolation which integrates to a finite total mass
(see Sec. 2.2), but we must deal with it when we extrap-

Fig. 13.— The BTFR implied by our non-parametric weak-
lensing mass profiles and the baryonic mass estimates from Famaey
et al. (2025). Baryonic masses assume a 1/r4 gas density tail (left)
or extrapolate the best-fit beta profiles out to r200c (right), see
Sec. 2.2. Gray diamonds indicate the two clusters with the smallest
radial range of X-ray observations, whose Mb are likely significantly
underestimated with the 1/r4 extrapolation. The solid gray line is
the galaxy-scale BTFR from Lelli et al. (2019). The shaded band

indicates a simple ΛCDM estimate with Vflat =
√

GMvir/rvir,
Mvir = fbMb, and fb ≈ 0.16. The size of the band corresponds to
the range of redshifts of the clusters shown.

olate by taking the beta profile fits at face value. Thus,
in the latter case, we simply evaluate Mb at the radius
r200c implied by our non-parametric mass profiles (in-
stead of at r = ∞). This choice is somewhat ad-hoc
but may have physical significance within ΛCDM, where
the baryon fraction may be expected to be close to the
cosmological one at the virial radius (see Sec. 4.3).

The resulting BTFRs are shown in Fig. 13. We do not
subtract the two-halo term. We have verified that it is
not important. How we estimate Mb is important, how-
ever. Extrapolating with a 1/r4 tail leads to a significant
offset from the Lelli et al. (2019) galaxy-scale relation
(solid line in Fig. 13), while evaluating the double beta
fits at r200c leads to a comparably small offset.

In either case, our results are consistent with exist-
ing literature finding that galaxy clusters may follow a
parallel relation compared to galaxies (Sanders 2003; Mc-
Gaugh 2015). With the 1/r4 extrapolation, the two clus-
ters with the lowest Mb clearly do not follow a parallel
relation, but this is expected since their Mgas is likely
significantly underestimated (Sec. 2.2).

Figure 13 also shows a simple ΛCDM estimate based on
identifying (Vflat,Mb) with (

√
GMvir/rvir, fbMvir) where

fb ≈ 0.16 is the cosmic baryon fraction. This corresponds
to a slope of 3 (McGaugh 2012) which is notably different
from the galaxy-scale BTFR which has a slope of about
4. A slope of about 4 seems to be a somewhat better
representation of the trend in our results.

4.6. RAR

The RAR relates the Newtonian acceleration gbar due
to the baryonic mass at a given radius, GNMb(r)/r2, to
the total acceleration gobs, GNM(r)/r2, at that radius.
Unlike the BTFR, this relation can be evaluated locally
at each radius (assuming spherical symmetry). Thus, in
the radial range where X-ray and weak-lensing observa-
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Fig. 14.— The RAR implied by our non-parametric weak-lensing mass profiles and the baryonic mass estimates from Famaey et al.
(2025). Blue circles indicate the radial range where X-ray and weak-lensing observations overlap. Beyond that range, we extrapolate the
gas densities assuming a 1/r4 tail (gray squares) or assuming the best-fit beta profiles remain valid even at large radii where they were
not well constrained by observations (gray triangles). We do not subtract the two-halo term (Sec. 3.2). Two data points with negative
gobs for MACS J0744 (see Fig. 6) are omitted. The dashed gray line indicates equality of gobs and gbar, the solid gray line indicates the
galaxy-scale RAR from Lelli et al. (2017). Assuming the galaxy-scale RAR holds for clusters, one can fit a missing baryonic component
(not included in gbar) to gobs (solid green lines, see Sec. 4.7).

Fig. 15.— Same as Fig. 14, but all clusters combined. Left: Extrapolating the gas densities with a 1/r4 tail. Right: Extrapolating the
gas densities assuming the best-fit beta profiles. Symbols are as in Fig. 14. Gray and white diamonds show the RAR of galaxies from
SPARC (Lelli et al. 2017) and KiDS (Mistele et al. 2024b; Lelli et al. 2024), respectively.
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tions overlap, we can measure the RAR without having
to worry about how to extrapolate the gas profiles.

The RAR implied by our baryonic and total mass esti-
mates of each galaxy cluster are shown in Fig. 14. Blue
symbols indicate the range where X-ray and weak-lensing
observations overlap. Outside this range, we separately
show extrapolations of Mb assuming a 1/r4 gas density
tail and assuming that the best-fit double beta profiles
continue to be valid (Sec. 2.2). We do not subtract the
two-halo term. Doing so does not significantly change the
results. Figure 15 shows the data of all galaxy clusters
combined.

The radial range where X-ray and weak-lensing obser-
vations overlap is quite narrow for many clusters and
non-existent for 3 clusters. Thus, we cannot draw strong
conclusions about the galaxy cluster RAR at large radii
or, equivalently, small accelerations. We can, however,
see that the galaxy-scale RAR seems to underpredict the
gobs of clusters already at relatively small radii, i.e. at
relatively large gbar. For a few clusters, this may be
because the weak-lensing measurements of gobs are not
trustworthy at small radii (e.g. RX J2129, see Sec. 4.1).
Another hypothesis (e.g., Milgrom 2008; Kelleher & Lelli
2024; Li et al. 2023; Famaey et al. 2025) is that there is
an additional baryonic mass component not captured by
our estimate of gbar. That the galaxy-scale RAR un-
derpredicts gobs already at small radii means that, if it
exists, this missing mass is not (only) to be found at large
radii. We discuss this more in Sec. 4.7.

4.7. Missing mass to recover galaxy-scale RAR

In Sec. 4.6, we saw that the galaxy-scale RAR under-
predicts the gobs observed in clusters. Assuming that the
RAR is a universal relation, this may be a sign that there
is a missing baryonic mass component (Eckert et al. 2022;
Kelleher & Lelli 2024; Famaey et al. 2025) such as unde-
tected, compact clouds of cold gas (Milgrom 2008). To
test this hypothesis, Kelleher & Lelli (2024) have fit the
observed gobs in clusters by adding a missing Mb com-
ponent and assuming that the galaxy-scale RAR holds.
They assumed a missing mass density proportional to
(Mmm,tot/r

3
s)(1 + r/rs)

−4 and found that such a profile
could reasonably explain the observed gobs within about
1 Mpc, where their data is likely not affected by hydro-
static bias. The same missing mass profile was also con-
sidered by Famaey et al. (2025) among a variety of other
profiles. We here repeat the fitting procedure of Kelleher
& Lelli (2024) using our measurements.

The fit has three free parameters, Mmm,tot, rs, as well
as a parameter Υb that scales the observed baryonic
mass, akin to a mass-to-light ratio. We assume flat priors
for 12 < log10 Mmm,tot/M⊙ < 16 and 1 < log10 rs/kpc <
4 as well as a log-normal prior around Υb = 1 with 0.1 dex
scatter. We do not subtract the two-halo term. Sub-
tracting the two-halo term does not significantly change
the results. For the RAR acceleration scale, we adopt
a0 = 1.2 · 10−10 m/s

2
(Lelli et al. 2017). The resulting

best fits are shown as solid green lines in Fig. 14 and
Table 2.

Overall, we find that a missing baryonic component
can reasonably fit our observations. We find best-fit pa-
rameters roughly consistent with those from Kelleher &
Lelli (2024) and Famaey et al. (2025). Finding a rea-

sonable missing Mb profile fails only when the observed
galaxy-cluster RAR in Fig. 14 dips below the solid gray
line, i.e. below the galaxy-scale RAR. This is because,
assuming the galaxy-scale RAR holds, such dips require
negative missing mass densities. This mostly only hap-
pens at the very largest radii, i.e. smallest gbar, and when
extrapolating the gas densities by taking the beta profile
fits from Famaey et al. (2025) at face value. No signif-
icant negative mass densities are required when extrap-
olating the gas density with a 1/r4 tail, corresponding
to a MOND isothermal sphere (Milgrom 1984). We also
note that neighboring data points are positively corre-
lated (see Fig. 16) so that the visual impression of neigh-
boring data points fluctuating down together may be
misleading. In any case, previous analyses have also seen
this phenomenon. At such large radii, however, analyses
based on gas thermodynamics may suffer from hydro-
static bias (Kelleher & Lelli 2024), gbar may not be well
constrained (Famaey et al. 2025), and, depending on the
theoretical framework, an external field effect may be
important (Kelleher & Lelli 2024).

As an alternative approach, assuming that the galaxy-
scale RAR holds universally, we can directly calculate
and study the (non-parametric) missing mass profiles
Mmiss

b (r) implied by our measurements of gobs and gbar.
We do so in Appendix G, finding similar results as above.

5. DISCUSSION

5.1. Concentration and sparsity

Our non-parametric results suggest a shift of perspec-
tive: Away from first performing a parametric fit and
then calculating quantities of interest in terms of the fit
results, towards directly inferring quantities of interest
from the non-parametric profiles M(r) or ρ(r), similar
to how we measured the total mass M200c in Sec. 4.1
or the baryon fraction Mb(r)/M(r) in Sec. 4.3. Another
quantity of interest is the concentration c, which captures
information about the shape of the mass profile. Tradi-
tionally, definitions of c are tied to specific parametric
profiles such as the NFW profile. A concentration can,
however, also be defined in a non-parametric way.

One example is the ratio c0.1 ≡ r200c/r0.1 where r0.1
is the radius that encloses 10% of the total mass (Yasin
et al. 2023). Indeed, in principle, we can directly mea-
sure c0.1 using our non-parametric mass profiles. Unfor-
tunately, just like parametrically defined concentrations
(Appendix F), c0.1 is challenging to measure in prac-
tice without extending the radial range covered by weak-
lensing observations (for example using strong lensing,
Merten et al. 2015; Umetsu et al. 2016, 2025). In our
current sample, only 4 clusters reach sufficiently small
radii to determine c0.1.

Another example is the sparsity, defined as M200c/M∆c

with, for example, ∆ = 500 or ∆ = 1000 (Balmès et al.
2014). Initial results indicate that our non-parametric
mass profiles tend to imply smaller sparsities than the
NFW fits from Umetsu et al. (2014), consistent with the
results from Balmès et al. (2014). A proper statistical
analysis as well as a comparison between different para-
metric and non-parametric concentration measures are
left for future work.

5.2. Density profiles
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TABLE 2
Fit parameters of the missing Mb profiles following Kelleher & Lelli (2024).

1/r4 extrapolated Mb best-fit extrapolated Mb
Name log10 Mmm,tot log10 ρs log10 rs log10 Υb log10 Mmm,tot log10 ρs log10 rs log10 Υb

M⊙ M⊙ Mpc−3 kpc M⊙ M⊙ Mpc−3 kpc

Abell 209 14.99+0.15
−0.16 15.48+0.25

−0.25 2.63+0.12
−0.13 +0.01+0.10

−0.10 14.91+0.16
−0.18 15.56+0.27

−0.26 2.58+0.13
−0.14 −0.01+0.10

−0.10

Abell 2261 14.83+0.13
−0.14 16.02+0.24

−0.22 2.40+0.11
−0.12 +0.00+0.10

−0.10 14.79+0.13
−0.15 16.09+0.25

−0.22 2.36+0.11
−0.12 −0.03+0.09

−0.09

RXJ2129 13.92+0.17
−0.16 17.75+0.94

−1.08 1.50+0.41
−0.34 +0.00+0.10

−0.10 13.88+0.15
−0.15 17.89+0.87

−1.03 1.45+0.38
−0.31 −0.02+0.09

−0.09

Abell 611 14.49+0.36
−0.33 16.23+1.58

−0.91 2.21+0.41
−0.64 +0.02+0.10

−0.10 14.39+0.37
−0.29 16.48+1.67

−1.03 2.09+0.45
−0.65 +0.02+0.10

−0.10

MS2137 14.77+0.29
−0.30 15.13+0.57

−0.55 2.68+0.26
−0.28 +0.00+0.10

−0.10 14.57+0.36
−0.48 15.22+0.92

−0.74 2.58+0.33
−0.45 +0.02+0.11

−0.11

RXJ2248 13.92+0.57
−1.08 15.58+2.33

−3.14 2.23+1.04
−0.85 +0.05+0.10

−0.10 13.84+0.57
−1.08 15.58+2.26

−3.33 2.19+1.13
−0.81 +0.03+0.09

−0.10

MACSJ1115 15.03+0.27
−0.28 14.89+0.50

−0.51 2.84+0.24
−0.24 +0.01+0.10

−0.10 14.52+0.49
−0.84 15.07+1.35

−1.14 2.63+0.45
−0.69 +0.05+0.11

−0.11

MACSJ1720 14.40+0.14
−0.15 18.19+1.04

−1.25 1.52+0.45
−0.36 +0.00+0.10

−0.10 14.38+0.14
−0.16 18.23+0.99

−1.21 1.49+0.43
−0.34 −0.03+0.10

−0.10

MACSJ0429 14.20+0.22
−0.22 17.39+1.37

−1.46 1.71+0.55
−0.48 +0.01+0.10

−0.10 14.07+0.21
−0.32 17.56+1.23

−1.67 1.60+0.60
−0.42 −0.04+0.10

−0.09

MACSJ1206 14.34+0.22
−0.19 17.51+1.31

−1.22 1.72+0.47
−0.47 +0.01+0.10

−0.10 14.29+0.19
−0.19 17.79+1.20

−1.28 1.61+0.49
−0.42 −0.01+0.09

−0.09

MACSJ0329 14.37+0.08
−0.09 18.69+0.71

−0.98 1.35+0.34
−0.25 −0.01+0.10

−0.10 14.34+0.08
−0.09 18.76+0.65

−0.88 1.31+0.31
−0.22 −0.04+0.09

−0.09

RXJ1347 14.83+0.19
−0.13 17.71+1.45

−1.01 1.83+0.39
−0.53 +0.01+0.10

−0.10 14.77+0.16
−0.12 18.06+1.32

−1.09 1.69+0.42
−0.47 −0.02+0.09

−0.10

MACSJ0744 14.55+0.28
−0.24 16.78+1.66

−0.94 2.05+0.40
−0.63 +0.01+0.10

−0.10 14.51+0.28
−0.24 16.86+1.60

−1.01 2.00+0.42
−0.61 −0.02+0.10

−0.10

MACSJ0416 14.19+0.26
−0.22 16.72+1.45

−0.88 1.94+0.37
−0.55 +0.02+0.10

−0.10 14.12+0.25
−0.20 17.07+1.37

−1.05 1.80+0.43
−0.50 −0.01+0.09

−0.09

MACSJ1149 14.82+0.31
−0.29 16.19+1.88

−0.92 2.34+0.40
−0.73 +0.02+0.10

−0.10 14.56+0.28
−0.25 17.10+1.75

−1.45 1.92+0.58
−0.62 −0.00+0.09

−0.09

MACSJ0647 14.32+0.47
−0.66 15.90+1.97

−1.87 2.25+0.71
−0.78 +0.03+0.11

−0.10 14.26+0.49
−0.75 15.83+2.02

−2.18 2.26+0.77
−0.79 +0.04+0.10

−0.10

Note. — The listed values are the 16th, 50th, and 84th percentiles. Values of ρs = 3Mmm,tot/(4πr3s) are provided for easier
comparison to Table 1 of Famaey et al. (2025).

In Sec. 4.2, we saw that reconstructing non-parametric
density profiles is viable but noisy with current data.
One way to ameliorate this may be to stack many clus-
ters. This is especially relevant given the large cluster
samples with weak-lensing data that are expected to be-
come available from instruments such as Euclid (Euclid
Collaboration et al. 2025), Roman (Spergel et al. 2015),
or Rubin (LSST Science Collaboration et al. 2009). This
may enable model-independent constraints on quantities
such as the splashback radius (e.g. Diemer & Kravtsov
2014; More et al. 2015, 2016), allowing to distinguish
between different models of dark matter and modified
gravity (Adhikari et al. 2018).

For example, in the context of MOND, one might ex-
pect a much weaker splashback signal than in ΛCDM.
Indeed, the splashback feature is a steep drop in density
corresponding to accreting collisionless matter reaching
its apocenter after first infall. In ΛCDM, a splashback
feature exists in both the dark matter and galaxy den-
sity profiles since both are collisionless. Since dark mat-
ter is the dominant contribution to the gravitational po-
tential, a splashback feature is then visible also in the
weak-lensing signal. In contrast, in MOND-like theories,
the dominant contribution to the gravitational poten-
tial is due to the collisional intracluster medium, with
only a sub-dominant contribution from the collisionless
galaxies. As a result, one may expect to see a weaker
splashback feature in the weak-lensing signal.

When testing individual theoretical models, it may
be easiest to follow ΛCDM-based analyses (e.g., More
et al. 2016) and fit a parametric density profile that is
chosen according to the specific model under consider-
ation. Nonetheless, non-parametric constraints are de-
sirable since they are easier to interpret and to apply
to many models at once. The feasibility of such non-
parametric constraints will be studied in future work.

5.3. Baryonic mass measurements

Compared to our total mass measurements from weak
lensing, the baryonic masses are relatively poorly con-
strained at large radii. This limits our results regard-
ing baryon fractions and regarding scaling relations such
as the BTFR and RAR. Better knowledge of the hot
gas density profiles would enable stronger constraints on
cosmology, dark matter, and modified gravity. Indeed,
as discussed in Sec. 2.2, results from the X-COP project
suggest that, while our simple 1/r4 extrapolation is per-
haps too steep, the beta profile fits from Famaey et al.
(2025) may not be steep enough at large radii. Cur-
rently, it is unknown where our cluster sample falls be-
tween these two extremes.

It would therefore be very useful to combine our non-
parametric weak-lensing measurements with improved
gas density profiles from follow-up X-ray observations.
Another possibility would be to stack the gas densities
of a large sample of galaxy clusters, for example from
eROSITA (Bulbul et al. 2024; Kluge et al. 2024), to in-
crease the signal-to-noise ratio at large radii. These could
then be combined with stacked weak-lensing observations
of the same sample from, for example, Euclid.

5.4. Cluster cosmology

Cluster cosmology aims to constrain cosmological pa-
rameters such as Ωm and σ8 using the high-mass end
of the halo mass function. This requires unbiased mass
measurements. We expect that the non-parametric
methods discussed here will be useful in minimizing the
impact of a number of important biases that affect such
measurements. In particular, many cluster cosmology
analyses are based on measurements of M200c. Non-
parametric measurements of M200c using our method will
(see Sec. 3.5 and Mistele & Durakovic 2024): 1) Not be
thrown off by baryonic effects that may change the shape
of the mass profile, 2) not be thrown off by complex, non-
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symmetric mass distributions at the centers of clusters
(e.g., late-stage mergers), 3) not be thrown off, on av-
erage, by triaxiality, 4) be less affected by miscentering
(and there is an efficient way to correct for residual mis-
centering effects), and 5) apply directly to models beyond
ΛCDM such as models based on ultra-light dark matter
that may change the shape of the halo profile. In ad-
dition, our mass reconstruction runs fast, taking only a
few milliseconds per cluster to run.

The caveat is that, by making fewer assumptions,
the statistical uncertainties become larger. However, as
shown in Sec. 4.1, that is only a moderate effect in prac-
tice. Also, with large cluster samples from upcoming and
future surveys statistical uncertainties will no longer be
the main limiting factor. In fact, a trade-off in favor
of significantly reduced systematic uncertainties, i.e. bi-
ases, at the cost of somewhat larger statistical error bars
may be required in order to fully exploit the potential of
instruments such as Euclid, Roman, or Rubin.

6. CONCLUSION

We have applied a new weak-lensing deprojection
method to the CLASH sample of galaxy clusters. We
have inferred non-parametric mass and density profiles,
which we have studied by themselves as well as in re-
lation to the baryonic mass components. We find: (1)
The implied circular velocities are approximately flat.

(2) The radially resolved baryonic mass fractions vary
significantly from cluster to cluster and depend strongly
on how we extrapolate the X-ray gas profiles at large
radii, so it is unclear whether the CLASH clusters reach
the cosmic baryon fraction expected in ΛCDM. (3) The
non-parametric masses are consistent with the ΛCDM
SMHM relation. (4) The CLASH clusters deviate from
the BTFR and the RAR defined by galaxies, but the
offset depends strongly on how we extrapolate the gas
masses. Contrary to some previous results based on hy-
drostatic equilibrium, we find that galaxy clusters may
fall on the same BTFR and RAR as galaxies if one adds
a suitable positive baryonic mass component.

Several of these results are limited by the baryonic
masses being relatively poorly constrained at large radii.
Improving on this will unlock stronger constraints on cos-
mology, dark matter, and modified gravity.

ACKNOWLEDGEMENTS

We thank Amel Durakovic, Paolo Tozzi, Pengfei Li,
and Konstantin Haubner for helpful discussions. This
work was supported by the DFG (German Research
Foundation) – 514562826.

Our non-parametric mass and density profiles, includ-
ing correlation matrices, as well as the flat circular veloc-
ities implied by the mass profiles are available on Zenodo,
https://dx.doi.org/10.5281/zenodo.15476959.

REFERENCES

Adhikari S., Sakstein J., Jain B., Dalal N., Li B., 2018, J.
Cosmology Astropart. Phys., 2018, 033

Aghanim N., et al., 2020, Astronomy & Astrophysics, 641, A6
Angelinelli M., Ettori S., Dolag K., Vazza F., Ragagnin A., 2023,

A&A, 675, A188
Balmès I., Rasera Y., Corasaniti P. S., Alimi J. M., 2014,

MNRAS, 437, 2328
Bartelmann M., 1995, A&A, 303, 643
Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Bekenstein J., Milgrom M., 1984, Astrophys. J., 286, 7
Berezhiani L., Khoury J., 2015, Phys. Rev., D92, 103510
Blanchet L., Skordis C., 2024, J. Cosmology Astropart. Phys.,

2024, 040
Bonamigo M., Despali G., Limousin M., Angulo R., Giocoli C.,

Soucail G. v., 2015, MNRAS, 449, 3171
Brouwer M. M., et al., 2021, Astronomy & Astrophysics, 650,

A113
Bulbul E., et al., 2024, A&A, 685, A106
Burke C., Hilton M., Collins C., 2015, MNRAS, 449, 2353
Chae K.-H., Lelli F., Desmond H., McGaugh S. S., Li P.,

Schombert J. M., 2020, Astrophys. J., 904, 51
Chae K.-H., Desmond H., Lelli F., McGaugh S. S., Schombert

J. M., 2021, Astrophys. J., 921, 104
Covone G., Sereno M., Kilbinger M., Cardone V. F., 2014, ApJ,

784, L25
Di Cintio A., Lelli F., 2016, MNRAS, 456, L127
Diemer B., Kravtsov A. V., 2014, ApJ, 789, 1
Donahue M., et al., 2014, ApJ, 794, 136
Donahue M., et al., 2016, ApJ, 819, 36
Durakovic A., Skordis C., 2024, J. Cosmology Astropart. Phys.,

2024, 040
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APPENDIX

A. TWO-HALO TERM IN ΛCDM

A.1. Subtraction procedure

Here, we describe the details of the two-halo subtraction procedure from Sec. 3.2. The two-halo term becomes
important only at projected radii R that are sufficiently large for Σ/Σcrit to be small. As is clear from Eq. (3), the
distinction between ∆Σ and G+ is then unimportant and we have to a good approximation ∆Σ = G+. For our
two-halo subtraction procedure, it then suffices to consider only the second step Eq. (8) of our deprojection procedure,
i.e. the step that converts ∆Σ to the mass M . The first step that converts G+ to ∆Σ is unimportant.

The excess surface density we observe, ∆Σobs contains contributions both from the galaxy cluster itself, ∆Σ1h, and
from the two-halo term, ∆Σ2h,

∆Σobs(R) = ∆Σ1h(R) + ∆Σ2h(R) . (A1)

When we apply the deprojection formula Eq. (8) from Sec. 3.1 to the observed ∆Σobs, we infer a mass profile Mobs

that likewise contains the desired contribution from the galaxy cluster itself, M1h, and a two-halo contribution M2h,

Mobs(r) = M1h(r) + M2h(r) , (A2)

where

M2h(r) ≡ 4r2
∫ π/2

0

dθ ∆Σ2h

( r

sin θ

)
. (A3)

We note that M2h is not the mass profile of any actual object. It just quantifies by how much our deprojection
technique overestimates the true galaxy cluster mass profile when applied to lensing data that contains contributions
from a cluster’s local environment. In practice, there is a technical complication, not captured by Eq. (A3), due to the
fact that we extrapolate G+ beyond the last measured data point at Rmax. This requires a modification of Eq. (A3)
that we discuss separately in Appendix A.2. Thus, in practice, we use Eq. (A12) instead of Eq. (A3).

A simple estimate of ∆Σ2h within ΛCDM is (e.g. Guzik & Seljak 2001; Oguri & Hamana 2011; Covone et al. 2014)

∆Σ2h(R) = b
ρ̄m,0

2πD(zl)2

∫ ∞

0

dℓ ℓJ2

(
ℓR

D(zl)

)
Pm(kℓ; zl) , (A4)

where J2 denotes the second Bessel function of the first kind, b is the bias, ρ̄m,0 is the mean matter density at redshift
z = 0, and Pm(kℓ; zl) is the linear matter power spectrum at kℓ = ℓ/[(1 + z)D(zl)]. We calculate Pm using CAMB and
we adopt the bias from Tinker et al. (2010) which gives b as a function of the mass M∆m and redshift zl,

b = b(zl,M∆m) . (A5)
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Here, M∆m is the mass within the radius r∆m where the cluster’s average mass density drops below ∆ times the
cosmological matter density ρ̄m at the cluster redshift zl. Below, we use M200c instead of M∆m. To avoid a mismatch,
we use a value of ∆ that makes the two halo mass definitions equivalent, namely ∆ = 200ρcrit(zl)/ρ̄m(zl).

Our goal is to recover the galaxy cluster’s mass profile M1h by subtracting the two-halo contribution M2h from
Mobs. To this end, we use the independent estimate of the two-halo contribution Eq. (A4). This estimate of ∆Σ2h

depends on the redshift and the total mass of the galaxy cluster. It can be converted to M2h using Eq. (A3) (or,
rather, Eq. (A12)). We denote this estimate of M2h by

M2h(r|M200c) , (A6)

which makes the dependence on the total mass explicit. Given the observed Mobs, we can determine M200c by
numerically solving the following equation for M200c,

Mobs(r200c) = M200c + M2h(r200c|M200c) , (A7)

where M200c = (4π/3) 200 · ρcrit r3200. This equation follows from Eq. (A2) by using our estimate M2h(r|M200c) for the
two-halo contribution and by using that, by definition, M1h(r200c) = M200c. Having determined M200c in this way, we
can extract the desired mass profile M1h(r) of the galaxy cluster by subtracting the two-halo contribution,

M1h(r) = Mobs(r) −M2h(r|M200c) . (A8)

The above procedure can easily be adapted to work with M500c instead of M200c. We will use M500c instead of M200c

for one galaxy cluster, Abell 383, where a value for M200c cannot be determined.

A.2. Adjustments due to extrapolation

The observed ∆Σ contains contributions from both the 1-halo and 2-halo terms, see Eq. (A1). Thus, applying our
deprojection formula Eq. (8) gives

Mobs(r) = 4r2
∫ π/2

0

dθ
(

∆Σ1h

( r

sin θ

)
+ ∆Σ2h

( r

sin θ

))
, (not quite correct in practice) . (A9)

This is what Eq. (A3) is based on, but it is not quite what we actually infer in practice. The reason is that, after the
last measured data point at Rmax, we no longer use ∆Σ = ∆Σ1h + ∆Σ2h in the integrand. Instead, we use a power
law extrapolation, G+ ∝ 1/Rn (see Sec. 3.1). At the large radii relevant for R ≥ Rmax, this extrapolation also implies
∆Σ ∝ 1/Rn to a good approximation. Thus, what we actually infer is

Mobs(r) = 4r2

 π/2∫
θmin

dθ
(

∆Σ1h

( r

sin θ

)
+ ∆Σ2h

( r

sin θ

))
+ (∆Σ1h(Rmax) + ∆Σ2h(Rmax))

Rn
max

rn

θmin∫
0

dθ sinn θ

 ,

(A10)
where θmin = arcsin(r/Rmax). If our power law extrapolation correctly captures the behavior of ∆Σ1h, this is

Mobs(r) = M1h(r) + 4r2

[∫ π/2

θmin

dθ∆Σ2h

( r

sin θ

)
+ ∆Σ2h(Rmax)

Rn
max

rn

∫ θmin

0

dθ sinn θ

]
. (A11)

Indeed, for the extrapolation, one should choose a power law decay 1/Rn that plausibly matches the behavior of the
shear due to the galaxy cluster itself, i.e. due to the one-halo term (not the total shear including the two-halo term).
We can now read off the correct expression to use for M2h(r|M200c) in our two-halo subtraction procedure,

M2h(r|M200c) = 4r2

[∫ π/2

θmin

dθ∆Σ2h

( r

sin θ

)
+ ∆Σ2h(Rmax)

Rn
max

rn

∫ θmin

0

dθ sinn θ

]
. (A12)

This replaces Eq. (A3) and takes into account that we extrapolate beyond the last measured data point Rmax. See
Appendix E for how to adopt this procedure when extrapolating assuming an NFW profile instead of a power law.

B. UNCERTAINTIES AND COVARIANCES

As systematic uncertainties, we consider our choices of how to extrapolate and interpolate the shear profile G+.
To estimate the effect of these choices, we first calculate mass profiles with opposite and extreme choices of how to
extrapolate G+ beyond the last data point. In particular, we consider extrapolating G+ assuming 1/R2 and 1/

√
R

power law decays. These correspond, respectively, to a decay as fast as for a point particle and to a decay significantly
slower than for an SIS. These cases likely bracket the true behavior of the cluster’s shear. At each radius r, we calculate
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Fig. 16.— The correlation matrix of the two-halo-subtracted masses inferred for Abell 209. The correlation matrix is defined in terms of
the covariance matrix as Cov(M(r),M(r′))/σM(r)σM(r′).

the minimum and maximum mass achievable in this way. Schematically,

M(r)max = max
n∈{ 1

2 ,1,2}
M(r)|extrapolate 1/Rn

, (B1)

M(r)min = min
n∈{ 1

2 ,1,2}
M(r)|extrapolate 1/Rn

. (B2)

To take into account systematic uncertainties from interpolation, we add (subtract) the difference between the mass
profiles obtained using linear and quadratic interpolation to Mmax (from Mmin). Schematically,

M
max
min → M

max
min ±

∣∣∣M(r)|quadratic − M(r)|linear
∣∣∣ . (B3)

For the statistical uncertainties and covariances, we use linear error propagation to convert uncertainties and co-
variances on G+ into uncertainties and covariances on the inferred mass M . Following Mistele & Durakovic (2024),
we implement this error propagation by writing differentiable Julia code and then using ‘ForwardDiff.jl‘ (Revels et al.
2016) to calculate the required Jacobians. This reduces linear error propagation to a simple matrix multiplication.

For the covariance matrix of G+ = ⟨g+⟩/⟨Σ−1
crit⟩, we take into account uncertainties in ⟨g+⟩ as well as uncertainties

and covariances due to ⟨Σ−1
crit,ls⟩ and due to the correlated LSS (Hoekstra 2003),

CG = CG
g + CG

crit + CG
LSS . (B4)

We assume that the measurement uncertainties on ⟨g+⟩ in different radial bins are uncorrelated,(
CG

g

)
ij

= δij
σ2
g+,i

⟨Σ−1
crit⟩2

, (B5)

where i and j run over the radial bins and σg+,i denotes the uncertainty on ⟨g+⟩ in the i-th radial bin. As discussed

in Sec. 3.1, we assume ⟨Σ−1
crit,ls⟩ to be the same in all radial bins. This induces correlations between the radial bins,(

CG
crit

)
ij

= ⟨g+,i⟩⟨g+,j⟩
σ2
crit

⟨Σ−1
crit⟩4

, (B6)

where σcrit is the uncertainty on ⟨Σ−1
crit,ls⟩. These formulas follow from the definition Eq. (4) of G+ in terms of g+

and Σcrit. The LSS contribution is important only at relatively large radii and following Umetsu (2020) we calculate
it from the non-linear matter power spectrum produced by CAMB (Lewis & Bridle 2002). For simplicity, we assume
all source galaxies to be located in a single source plane with effective redshift zs,eff when calculating CG

LSS (see also

Miyatake et al. 2019). We take zs,eff to be the source redshift whose critical surface density Σcrit is ⟨Σ−1
crit⟩.

In addition to G+, our deprojection method from Sec. 3.1 also has a second input, namely fc = ⟨Σ−2
crit,ls⟩/⟨Σ

−1
crit,ls⟩.

For simplicity and because Umetsu et al. (2014) do not readily provide these, we do not take into account uncertainties
in fc. We expect that doing so would only have a minor effect since fc only enters as the prefactor of Σ/Σcrit in
the relation G+ = ∆Σ/(1 − fc · Σ/Σcrit). Indeed, this term is unimportant at large radii and gives only moderate
corrections at small radii. We expect the same to hold for corrections to the uncertainties and covariances induced by
fc. In addition, we expect the uncertainties on fc to be less than 10%. This is smaller than the typical uncertainties
on the shear G+ at small radii, which would further reduce the importance of the fc uncertainties.
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As mentioned above, we obtain the covariance matrix of the inferred masses M(r) by linearly propagating the
covariance matrix of G+(R). As a representative example, Fig. 16 shows the correlation matrix of the inferred, two-halo
subtracted masses M(r) for Abell 209. We see that neighboring data points are correlated. In part, these correlations
are already present in the inputs to our method and are just propagated into the result. But more importantly, the
integrals Eq. (7) and Eq. (8) mix different radii, producing additional correlations with the characteristic pattern
previously found in Mistele et al. (2024a).

C. DERIVATION OF DENSITY RECONSTRUCTION FORMULA

We start with Eq. (8) which gives M(r) in terms of ∆Σ(R),

M(r) = 4r2
∫ π/2

0

dθ ∆Σ
( r

sin θ

)
≡ 4r2I(r) , (C1)

where I denotes the θ integral. Using ρ = M ′(r)/4πr2, this gives

ρ(r) =
I ′(r)

π
+

2I(r)

πr
. (C2)

Our goal is to get rid of the derivative in the I ′(r) term. The idea is to pull the derivative into the integrand of the
θ integral, so that it acts on ∆Σ, and then use integration by parts. It will be useful to temporarily relax the upper
integration boundary to π/2 − ϵ and take the limit ϵ → 0 at the end of the calculation,

I(r) = lim
ϵ→0

Iϵ(r) ≡ lim
ϵ→0

∫ π
2 −ϵ

0

dθ∆Σ
( r

sin θ

)
. (C3)

We have

I ′ϵ(r) =

∫ π
2 −ϵ

0

dθ∆Σ′
( r

sin θ

) 1

sin θ
= −1

r

∫ π
2 −ϵ

0

dθ
sin θ tan θ

sin θ
∂θ

[
∆Σ

( r

sin θ

)]
. (C4)

After integrating by parts, this becomes

I ′ϵ(r) = −1

r

[
tan θ∆Σ

( r

sin θ

)]θ=π
2 −ϵ

θ=0
+

1

r

∫ π
2 −ϵ

0

dθ (∂θ tan θ) ∆Σ
( r

sin θ

)
(C5)

= −∆Σ(r)

ϵ r
+

1

r

∫ π
2 −ϵ

0

dθ∆Σ
( r

sin θ

) 1

cos2 θ
+ O(ϵ) . (C6)

The 1/ϵ divergence is why it was useful to relax the upper integration boundary. Importantly, a 1/ϵ divergence exists
not only in the boundary term but also in the remaining integral. In fact, the divergence from the remaining integral
precisely cancels the 1/ϵ from the boundary term. This must be the case because the expression we started with was
finite in the limit ϵ → 0. The factor of ∆Σ

(
r

sin θ

)
in the remaining integral is well-behaved at θ → π/2, i.e. at the

upper integration boundary in the limit ϵ → 0. The 1/ϵ divergence is due only to the 1/ cos2 θ factor. In fact,∫ π
2 −ϵ

0

dθ

cos2 θ
=

1

ϵ
+ O(ϵ) . (C7)

We can therefore rewrite the 1/ϵ from the boundary term as this 1/ cos2 θ integral and combine all integrals into one,

I ′ϵ(r) =
1

r

∫ π
2 −ϵ

0

dθ
∆Σ

(
r

sin θ

)
− ∆Σ(r)

cos2 θ
+ O(ϵ) . (C8)

The integrand of this integral is finite everywhere in the interval (0, π/2). This can be verified by expanding the
integrand around π/2. The limit ϵ → 0 can now be taken,

I ′(r) = lim
ϵ→0

I ′ϵ(r) =
1

r

∫ π
2

0

dθ
∆Σ

(
r

sin θ

)
− ∆Σ(r)

cos2 θ
. (C9)

Plugging this result into Eq. (C2) gives the desired result Eq. (9).

D. LINE-OF-SIGHT AVERAGE OF INFERRED MASS

As discussed in Sec. 3.5, our deprojection formulas from Sec. 3.1 were derived assuming spherical symmetry. Here
we show that, nevertheless, if we average over all line-of-sight directions, our deprojection formulas Eq. (7) and Eq. (8)
produce the true mass Mtrue (see Eq. (12)) even for non-symmetric mass distributions. This result holds given that
two conditions are satisfied: (i) We restrict to the radial range where Σ/Σcrit is negligible, and (ii) the source galaxy
redshifts follow probability distributions that do not depend on the azimuth (but may depend on projected radius R).



20

The latter condition disallows a lopsidedness in the source galaxy population, but does allow a radial variation, for
example due to obscuration towards the cluster center.

To show that this result holds, we first note that the true mass Mtrue(r) =
∫
|x⃗′|<r

d3x⃗′ρ(x⃗′) (Eq. (12)) can be written

as a spherical integral over a spherical density ρ̄(r) obtained by averaging the 3D density ρ(x⃗) over the solid angle,

Mtrue(r) = 4π

∫ r

0

dr′r′2ρ̄(r′) with ρ̄(|x⃗|) ≡ 1

4π

∫
dΩ ρ(R(Ω) · x⃗) , (D1)

where R(Ω) is a rotation matrix that implements rotation by Ω. The proof below then proceeds roughly as follows:
Due to the assumption that Σ/Σcrit ≪ 1, the deprojection procedure from Sec. 3.1 becomes linear in the density ρ
(see the denominator of the right-hand side in Eq. (3)). As a result, averaging the inferred mass Minferred over the line
of sight becomes equivalent to running the deprojection procedure for a (fictitious) cluster that has a mass density
ρ̄(r). Since ρ̄ is spherically symmetric, the deprojection procedure correctly infers the mass associated with ρ̄(r) which,
according to Eq. (D1), is just Mtrue. In the following, we work out these steps in detail.

The deprojection formulas from Sec. 3.1 are based on the observable G+ = ⟨g+⟩/⟨Σ−1
crit⟩. As a first step, we will

show that, in the radial range where Σ/Σcrit ≪ 1, we have

G+(R) = ∆Σg(R) with ∆Σg(R) ≡ M2D(R)

πR2
− ⟨Σ⟩(R) , (D2)

where ⟨Σ⟩ is the azimuthally-averaged surface density and the subscript g in ∆Σg indicates that this definition of
∆Σ applies more generally than the definition given in Eq. (6) which applies only in spherical symmetry. Assuming
spherical symmetry and Σ/Σcrit ≪ 1, we can obtain the very similar result G+ = ∆Σ from Eq. (3) (with ∆Σ defined by
Eq. (6)). The important difference is that Eq. (D2) holds without any symmetry assumptions on the mass distribution.
To see this, we first consider the average ⟨g+⟩(R) of the reduced tangential shear g+ = γ+/(1−Σ/Σcrit) (Bartelmann &
Schneider 2001). The average ⟨. . . ⟩ can be understood as, first, separately at each position (R cosφ,R sinφ) averaging
over the source redshifts zs, and then averaging azimuthally over φ,

⟨g+⟩(R) =

∫
dφ

2π

∫
dzs p(zs|R,φ) g+(R,φ) =

∫
dφ

2π

∫
dzs p(zs|R,φ) γ+(R,φ) , (D3)

where we used the assumption Σ/Σcrit ≪ 1, which implies that g+ becomes γ+. Further, our assumption that the
source redshifts are drawn from probability distributions that do not depend on the azimuth means that p(zs|R,φ)
satisfies p(zs|R,φ) = p(zs|R). Thus, we can pull the zs integral including the factor of p(zs|R) outside the φ integral,

⟨g+⟩(R) =

∫
dzs p(zs|R)Σ−1

crit,ls ·
∫

dφ γ+(R,φ)Σcrit,ls , (D4)

where we also judiciously introduced factors of Σcrit,ls. Importantly, the azimuthal average of γ+Σcrit gives ∆Σg

without having to assume any symmetry of the mass distribution (Kaiser 1995; Bartelmann 1995). Since ∆Σg is a
property of only the lens, it is independent of the source redshifts zs, and we can pull it outside the zs integral,

⟨g+⟩(R) = ∆Σg(R) ·
∫

dzs p(zs|R)Σ−1
crit,ls = ∆Σg(R) · ⟨Σ−1

crit,ls⟩ . (D5)

This is the desired result Eq. (D2) after using the definition G+ = ⟨g+⟩/⟨Σ−1
crit⟩.

We note that, as discussed in Mistele & Durakovic (2024), if individual redshift estimates for the source galaxies are
available, the definition of G+ can be changed to G+ = ⟨Σcrit,ls g+⟩. In this case, the desired Eq. (D2) follows even
without having to assume that p(zs|R,φ) is independent of φ.

In any case, the input to our deprojection formulas Eq. (7) and Eq. (8) from Sec. 3.1 are now G+(R) = ∆Σg(R) and
fc. The first of these two deprojection formulas, Eq. (7), reduces to “∆Σ” = ∆Σg in the radial range where Σ/Σcrit is
negligible (here, “∆Σ” is understood as the result of evaluating the right-hand side of Eq. (7), which is to be inserted
into Eq. (8). Its formal definition Eq. (6) does not apply outside spherical symmetry). This follows from Eq. (3) by
using the fact that Σ/Σcrit ≪ 1 implies fcΣ ≪ 1 for any reasonably-behaved source redshift distribution. Thus, this
first deprojection step is trivial in the radial range where Σ/Σcrit ≪ 1. The remaining second step of the deprojection
procedure is Eq. (8) with ∆Σg as the integrand. Specifically, the mass Minferred we infer is

Minferred(r) ≡ 4r2
∫ π/2

0

dθ∆Σg

( r

sin θ

)
= 4r2

∫ π/2

0

dθ

(
M2D(R)

πR2
− ⟨Σ⟩(R)

)∣∣∣∣
R= r

sin θ

. (D6)

Here, M2D(R) is the mass enclosed in the line-of-sight cylinder with radius R, which can be written as an integral over
the azimuthally-averaged surface density ⟨Σ⟩,

Minferred(r) = 4r2
∫ π/2

0

dθ

(
2

R2

∫ R

0

dR′R′⟨Σ⟩(R′) − ⟨Σ⟩(R)

)∣∣∣∣∣
R= r

sin θ

. (D7)
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The right-hand side now depends only on the azimuthally-averaged surface density ⟨Σ⟩.
Consider averaging this Minferred over all line-of-sight directions. This amounts to calculating

1

4π

∫
dΩMΩ

inferred(r) , (D8)

where the integral over the solid angle Ω corresponds to the line-of-sight average and MΩ
inferred denotes the mass we

infer when the underlying density is rotated by Ω with respect to the original mass distribution. We refer to the
density of the rotated mass distribution as ρΩ,

ρΩ(x⃗) ≡ ρ(R(Ω) · x⃗) . (D9)

Similarly, we denote the azimuthally-averaged surface density corresponding to ρΩ by ⟨Σ⟩Ω. Concretely, MΩ
inferred is

given by Eq. (D7) with ⟨Σ⟩ replaced by ⟨Σ⟩Ω. Let’s explicitly write out this expression for MΩ
inferred in terms of ρΩ,

4r2
∫ π/2

0

dθ

∫
dφ

2π

∫
dz

(
2

(r/ sin θ)2

∫ r
sin θ

0

dR′R′ρΩ(R′ cosφ,R′ sinφ, z) − ρΩ
( r

sin θ
cosφ,

r

sin θ
sinφ, z

))
. (D10)

This is linear in ρΩ and depends on Ω only through ρΩ. Thus, when averaging MΩ
inferred over the line-of-sight directions

as in Eq. (D8), we can move the Ω integral past the other integrals and find

1

4π

∫
dΩMΩ

inferred = 4r2
∫ π/2

0

dθ

∫
dz

(
2

R2

∫ R

0

dR′R′ρ̄
(√

R′2 + z2
)
− ρ̄

(√
R2 + z2

))∣∣∣∣∣
R= r

sin θ

(D11)

= 4r2
∫ π/2

0

dθ

(
2

R2

∫ R

0

dR′R′Σ̄(R′) − Σ̄(R)

)∣∣∣∣∣
R= r

sin θ

, (D12)

where ρ̄(r) = 1
4π

∫
dΩ ρ(R(Ω) · x⃗) as in Eq. (D1). The integrand of the θ integral on the right-hand side is the excess

surface density ∆Σ̄(R) of a (fictitious) lens with density ρ̄ evaluated at R = r/ sin θ,

1

4π

∫
dΩMΩ

inferred = 4r2
∫ π/2

0

dθ∆Σ̄
( r

sin θ

)
. (D13)

Since that fictitious lens is spherically symmetric, the θ deprojection integral will infer the corresponding mass M̄ ,

1

4π

∫
dΩMΩ

inferred = M̄(r) ≡ 4π

∫ r

0

dr′r′2ρ̄(r′) . (D14)

According to Eq. (D1), this is the same as Mtrue, which is what was to be shown.

E. NFW EXTRAPOLATION

As an alternative to extrapolating G+ beyond the last measured data point by assuming a power law, we here
consider extrapolation assuming an NFW profile. In particular, we assume that, beyond the last measured data point
at R = Rmax, the shear profile G+ = ⟨g+⟩/⟨Σ−1

crit⟩ is given by (see Eq. (3))

G+(R > Rmax) =
∆ΣNFW(R|Mmatch

200c )

1 − fc ΣNFW(R|Mmatch
200c )

, (E1)

where ∆ΣNFW(R|M200c) and ΣNFW(R|M200c) denote, respectively, the excess surface density and surface density of
an NFW halo with a given M200c. Explicit formulas for ∆ΣNFW and ΣNFW are given, for example, in Umetsu (2020).
For simplicity, we here fix the concentration c200c by assuming the WMAP5 mass-concentration relation from Macciò
et al. (2008), so that the NFW profiles are fully specified by M200c alone. Choosing a different mass-concentration
relation does not significantly change our results. When extrapolating G+ using Eq. (E1), we determine M200c by
matching to the observed shear G+ at the last data point at Rmax and denote the result by Mmatch

200c ,

G+(R = Rmax) =
∆ΣNFW(Rmax|Mmatch

200c )

1 − fc ΣNFW(Rmax|Mmatch
200c )

. (E2)

We note that Mmatch
200c does not necessarily coincide with the cluster’s actual M200c as inferred from the full, deprojected

mass profile M(r), hence the different notation.
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Fig. 17.— Same as Fig. 5, but additionally showing results when extrapolating the shear profile G+ assuming an NFW profile (red
symbols) instead of assuming a 1/R power law (blue symbols). We do not show results without the two-halo subtraction for visual clarity.
Dashed gray lines are the circular velocities implied by the NFW fits from Umetsu et al. (2014), which do not take into account the two-halo
term. There is no result with NFW extrapolation for Abell 383 since no value for M200c can be determined from its non-parametric mass
profile (see Sec. 4.1) and we cannot switch to M500c because our mass-concentration relation works only for M200c. Similarly, there is no
result with NFW extrapolation for MACS J0744 because the last G+ data point is negative, so our simple matching procedure does not
find an NFW profile to extrapolate with.

The two-halo subtraction procedure described in Sec. 3.2 and Appendix A is mostly unchanged when extrapolating
with an NFW profile. We only need to replace Eq. (A12) for the two-halo contribution to the inferred mass M2h with

M2h(r|M200c) = 4r2

[∫ π/2

θmin

dθ ∆Σ2h

( r

sin θ

)
+

∫ θmin

0

dθ
(

∆ΣNFW

( r

sin θ

∣∣∣Mmatch,obs
200c

)
− ∆ΣNFW

( r

sin θ

∣∣∣Mmatch,sub
200c

))]
. (E3)

Here, Mmatch,obs
200c is determined by matching an NFW profile to the observed G+(Rmax) as in Eq. (E2), and Mmatch,sub

200c
is obtained by matching an NFW profile to G+(Rmax) minus the two-halo contribution, i.e. by matching an NFW
profile to G+ − G+,2h at R = Rmax. We note that the two-halo contribution G+,2h depends on the actual M200c (as
determined by the full, deprojected mass profile M(r)) through the bias factor b(zl,M200c) (see Appendix A) and,

therefore, so does Mmatch,sub
200c .

In practice, since it makes the code simpler and faster, we actually determine Mmatch,sub
200c from the equation

∆ΣNFW(Rmax|Mmatch,obs
200c ) − ∆Σ2h(Rmax) = ∆ΣNFW(Rmax|Mmatch,sub

200c ) . (E4)

If the two-halo term is negligibly small at Rmax, this gives Mmatch,obs
200c = Mmatch,sub

200c which is the correct outcome in
this case, i.e. it is what we would have obtained from matching an NFW profile to G+ − G+,2h at Rmax. When the
two-halo term becomes non-negligible, we are very likely at sufficiently large radii for the difference between G+ and
∆Σ to be unimportant (see Appendix A). Thus, in this case, the outcome will again match the outcome of matching

to G+ −G+,2h. This justifies our simplified procedure for determining Mmatch,sub
200c .

Figure 17 shows the cirular velocities inferred using the NFW extrapolation described above, including the adjusted
two-halo subtraction procedure. At large radii there is a small difference compared to our fiducial 1/R extrapolation.
This small difference is adequately captured by our systematic uncertainty band which is spanned by extrapolation
with 1/

√
R and 1/R2 power laws. For reference, Fig. 17 also shows the circular velocities implied by the NFW fits

from Umetsu et al. (2014). These NFW fits do not take into account the two-halo term.
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Fig. 18.— The best-fit parameters obtained by fitting NFW profiles to our non-parametric mass profiles M(r) from Fig. 6 (green circles)
and to our non-parametric density profiles ρ(r) from Fig. 9 (purple diamonds). Unlike the mass profiles M(r), the density profiles ρ(r) do
not contain information about the mass distribution within the smallest radial bin, leading to different fit results. No two-halo subtraction
is performed, allowing for a direct comparison to the NFW fits from Umetsu et al. (2014) (gray triangles). No uncertainties on the
concentrations are given in Umetsu et al. (2014) so these are not shown. The shaded gray region indicates the mass-concentration relation
from Dutton & Macciò (2014) for the range of redshifts of our cluster sample. Gray dashed lines indicate 0.1 dex scatter around that region.

TABLE 3
NFW fit results

NFW fit to M(r) NFW fit to ρ(r)
Name log10 M200c c200c log10 M200c c200c

M⊙ M⊙

Abell 383 14.94+0.14
−0.12 6.29+2.32

−2.34 15.02+0.21
−0.27 0.37+0.66

−0.22

Abell 209 15.37+0.09
−0.09 2.63+0.67

−0.57 15.37+0.08
−0.09 3.58+1.56

−1.07

Abell 2261 15.30+0.08
−0.08 4.28+0.88

−0.76 15.32+0.07
−0.07 5.25+2.38

−1.72

RXJ2129 14.76+0.13
−0.12 5.74+2.55

−2.17 14.69+0.20
−0.28 0.87+1.24

−0.53

Abell 611 15.21+0.15
−0.15 2.85+1.94

−1.26 15.15+0.16
−0.22 1.38+2.23

−0.91

MS2137 15.11+0.13
−0.14 1.78+1.07

−0.80 15.08+0.14
−0.18 1.05+1.75

−0.71

RXJ2248 15.14+0.15
−0.16 2.82+2.23

−1.29 15.06+0.19
−0.31 1.79+2.56

−1.17

MACSJ1115 15.28+0.12
−0.12 1.43+0.84

−0.62 15.25+0.13
−0.17 0.98+1.27

−0.60

MACSJ1931 15.23+0.25
−0.27 1.85+3.13

−1.40 14.89+0.38
−0.74 0.71+2.39

−0.52

RXJ1532 14.70+0.11
−0.13 7.01+2.09

−2.62 13.93+0.49
−0.57 1.06+3.68

−0.84

MACSJ1720 15.06+0.09
−0.10 6.87+2.07

−2.22 14.62+0.34
−0.65 1.79+3.69

−1.39

MACSJ0429 14.89+0.15
−0.16 4.55+3.02

−2.11 14.49+0.34
−0.56 0.62+2.16

−0.44

MACSJ1206 15.16+0.12
−0.12 4.22+2.51

−1.73 14.97+0.20
−0.24 0.27+0.43

−0.13

MACSJ0329 14.96+0.07
−0.07 8.30+1.23

−1.82 14.34+0.33
−0.45 0.37+1.35

−0.22

RXJ1347 15.44+0.09
−0.08 6.80+2.01

−1.95 15.23+0.21
−0.31 0.62+2.08

−0.43

MACSJ0744 15.18+0.11
−0.12 4.23+2.21

−1.46 15.37+0.11
−0.14 6.89+2.15

−2.67

MACSJ0416 14.99+0.10
−0.11 3.92+1.61

−1.12 15.02+0.11
−0.14 4.47+3.31

−2.43

MACSJ1149 15.39+0.10
−0.11 2.52+1.60

−0.99 15.24+0.20
−0.29 0.55+1.50

−0.36

MACSJ0717 15.49+0.07
−0.08 3.55+1.04

−0.79 15.55+0.07
−0.08 6.41+2.33

−2.35

MACSJ0647 15.09+0.14
−0.15 2.27+2.26

−1.24 15.13+0.17
−0.26 2.67+3.99

−1.94

Note. — The listed values are the 16th, 50th, and 84th per-
centiles.

F. NFW FITS TO NON-PARAMETRIC MASS AND DENSITY PROFILES

We have fit NFW profiles to both our non-parametric mass profiles M(r) and our non-parametric density profiles ρ(r).
We loosely follow Umetsu et al. (2014) in using a Bayesian fitting procedure with flat priors for 13 < log10 M200c/M⊙ <
17 and −1 < log10 c200c < 1. We use the julia package ‘Turing.jl’ (Ge et al. 2018) with the ‘Emcee()’ sampler (Foreman-
Mackey et al. 2013). For ρ(r), but not M(r), it can happen that the covariance matrix has a zero eigenvalue. For
example, a direct calculation shows that, in a simple setup with just two radial bins R1 and R2 and linear interpolation,
it can happen that the inferred density in the first bin, ρ(r = R1), is completely independent of the shear measurement
at R1, due to a cancellation of different terms in Eq. (9). The reconstructed ρ values in the two radial bins are
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Fig. 19.— The missing baryonic mass implied by assuming that the galaxy-scale RAR holds also for galaxy clusters. Blue circles indicate
the radial range where X-ray and weak-lensing observations overlap. Beyond that range, we extrapolate the gas densities assuming a 1/r4

tail (gray squares). Arrowheads at the horizontal axis indicate negative missing mass. We do not subtract the two-halo term. Solid blue
and gray lines show the gas mass profiles. The solid green line indicates the best fit to Mmiss

b following the fitting procedure of Kelleher &
Lelli (2024).

then 100% correlated; both are completely determined by the shear at R2. This leads to a zero eigenvalue in the
covariance matrix. To avoid numerical issues with the inverse covariance matrix, we detect such behavior and remove
the corresponding eigenvector from the fit, leaving only the orthogonal subspace of densities to be fit. We apply
this removal procedure when the smallest eigenvalue of the correlation matrix is at least 100 times smaller than the
second-smallest eigenvalue.

The best-fit parameters are shown in Fig. 18 and Table 3. We did not apply our two-halo subtraction procedure to
allow a more direct comparison to Umetsu et al. (2014). When fitting to M(r), we find best-fit parameters consistent
with those of Umetsu et al. (2014).

However, fitting our non-parametric density profiles does not recover the same fit parameters. In particular, concen-
trations are systematically smaller when fitting ρ(r). In addition, the statistical uncertainties on the NFW parameters
are larger, with concentrations being particularly poorly constrained. This is because in going from M(r) to ρ(r) one
loses information, unless ρ(r) is measured all the way down to r = 0: Weak-lensing observations do not extend all the
way to the centers of clusters, so there is a minimum radius rmin down to which we infer ρ(r). As a result, we cannot
reconstruct M(r) from ρ(r). We can only reconstruct M(r) −M(rmin), because the density ρ(r) at r > rmin does not
know anything about the mass distribution within rmin. In contrast, the mass profile M(r) at r > rmin does. It knows
the total amount of mass within rmin.

There is some amount of degeneracy between concentration and mass even when fitting to M(r). This may be why
the Dutton & Macciò (2014) mass-concentration relation shown in Fig. 18 seems not to be followed very closely even
by our fits to M(r). Breaking this degeneracy may require extending the radial range covered by observations, for
example using strong lensing (e.g., Merten et al. 2015; Umetsu et al. 2016, 2025).
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Fig. 20.— Same as Fig. 19 but extrapolating the gas densities assuming the best-fit beta profiles.

G. MISSING MASS ASSUMING THE GALAXY-SCALE RAR

The galaxy-scale RAR can be parametrized as a relation between gobs and gbar with µ(|gobs|/a0) gobs = gbar, where
µ is the so-called interpolation function. We adopt the so-called “simple” interpolation function µ(x) = x/(1 + x). If
we assume the galaxy-scale RAR to hold universally, the missing baryonic mass Mmiss

b is then given by

GNMmiss
b (r)

r2
= µ

(
|gobs(r)|

a0

)
gobs(r) − gbar(r) . (G1)

This Mmiss
b must be a monotonic function of radius if the mismatch between our measurements of µ(|gobs|)gobs and

gbar is indeed due to missing baryons.
Figure 19 shows the missing mass Mmiss

b implied by our weak-lensing analysis and assuming a 1/r4 extrapolation for
the gas densities. We do not subtract the two-halo term. Subtracting the two-halo term does not significantly change
the results. In the region where X-ray and weak-lensing observations overlap, we find that Mmiss

b is a monotonic
function within the uncertainties. An exception are the innermost three data points of RX J2129, which, however,
may not be reliable (Sec. 4.1). At larger radii, some clusters have non-monotonic and even negative Mmiss

b , but the
error bars are large and often consistent with the monotonic mass profiles Mmm(r) (solid green lines, see below).

Figure 20 shows the Mmiss
b implied by assuming the beta profile fits from Famaey et al. (2025) are valid even beyond

RX
max. This increases gbar at large radii, implying more non-monotonicities in Mmiss

b . Famaey et al. (2025) find that,
within 1 Mpc, Mmiss

b tracks the gas mass. We can confirm that result for a few clusters, for example for Abell 209 and
Abell 2261, but it does not seem to hold as univerally as for the NFW fits from Famaey et al. (2025).

The solid green lines in Fig. 19 and Fig. 20 show the best fit missing mass component Mmm(r) following Kelleher &
Lelli (2024) (Sec. 4.7). This additional mass component Mmm(r) is always a monotonic function of r. Despite this, the
solid green lines in Fig. 20 can be non-monotonic because they correspond to Mmm(r) + (Υb − 1)Mb(r) which is the
quantity that, for good fits, should match the non-parametric missing mass profiles shown there (which have Υb = 1).

This paper was built using the Open Journal of Astrophysics LATEX template. The OJA is a journal which provides
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